Закон ампера: формулировка и применение

Уравнения Максвелла

Часть закона Ампера о том, как электрические токи, источники магнитного поля, относятся к самому полю. Другими словами, это (в совокупности с законом Гаусса для магнетизма) точно описывает картину, в которой электрические токи порождают магнитные поля. Поправочная часть Максвелла является значимой, поскольку она говорит, что магнитные поля появляются, когда электрические поля изменяются во времени.

В доходчивой форме закон Ампера принимает участие соответственно линейности уравнений Максвелла и, следовательно, всей теории классической электродинамики. Если взять два токовых распределителя и их совместить, тогда магнитное поле будет представлять собой сумму магнитных полей, производимых каждой конфигурацией.

https://www.youtube.com/watch?v=ytabout

Регулировочный элемент Максвелла является еще линейным, и, следовательно, электромагнитные волны являются линейными тоже. Они мешают друг другу согласно принципу суперпозиции и проходят прямо сквозь друг друга без рассеяния.

Физический смысл закона

Рассмотрим упрощённый вариант влияния магнитной индукции на электрическое поле. Для этого представим себе два параллельных проводника, по которым циркулируют постоянные токи, например, I1 и I2. Вблизи этих проводников образуется поле, которое мысленно можно ограничить неким контуром L – воображаемой замкнутой фигурой, плоскость которой пересекает потоки движущихся зарядов.

Направления векторов I1 и I2 определяется по правилу буравчика.

Приведённые выше рассуждения можно рассматривать в качестве примера изображающего упрощённую модель частного случая рассматриваемого закона. В действительности же, процессы взаимного влияния магнитных и электрических полей намного сложнее, и они описываются интегральными и дифференциальными уравнениями Максвелла.

Это влечет за собой некоторые векторные исчисления, которые можно объяснить интуитивно понятным способом:

  • Магнитные поля создаются электрическими токами.
  • Магнитные поля «накручены» на ток, который их производит в заданном направлении.
  • Чем больше ток, тем сильнее создается магнитное поле. Напряженность магнитного поля пропорциональна току.

Закон ампера: формулировка и применение

Закон Ампера связывает вместе эти понятия в одной из двух математических формул. Поле становится более интенсивным по мере приближения к проводу.

Как объяснить закон Ампера простым языком?

Простейшим объяснением является то, что провод переносит ток. Если игнорировать магнитное поле Земли, можно представить, что вертикальный провод с электрическим током идет вверх.

Люди склонны говорить об электромагнетизме, но электричество отдельно от магнетизма, поскольку установлено, что электричество и магнетизм влияют друг на друга и могут быть объединены в систему уравнений. В частности, в случае токоведущих проводов электрический ток производит магнитное поле. Ориентация этих полей не очень понятна, но это заметно. Магнитные компасы могут быть размещены вокруг токоведущих проводов, а направления поля можно увидеть в направлениях игловых точек.

Есть возможность рассмотреть это из-за простой симметрии. Ток в проводе производит магнитное поле, но что должно произойти с узором в этих полях, если провод остается вертикальным и поворачивается на некоторый угол около этой вертикальной оси? Дело в том, что ток не меняется в любом случае на такой поворот. Он по-прежнему идет прямо. Следовательно, это вращение не может изменить картину магнитного поля, которое производится.

ЧИТАТЬ ДАЛЕЕ:  Что делать если почувствовали запах газа? Утечка газа в квартире

Упрощенный подход

Выразить закон в дифференциальном представлении довольно сложно. Потребуется вводить дополнительные компоненты. Необходимо учитывать влияние молекулярных токов. Наличие вихревых токов является причиной образования магнитного вихревого поля в пределах контура.

Вектор электрического смещения сравним с вектором напряжённости присутствующего магнитного поля H. При этом Ориентация вектора смещения зависит от быстроты изменения магнитной индукции.

Для упрощения вычислений на практике часто пользуются формулами закона для магнитного поля полных токов, представленных в виде суммирования предельно малых участков контура, с учётом влияния вихревых полей. При реализации этого метода контур мысленно разбивают на бесконечно малые отрезки. На этих отрезках проводники считаются прямолинейными, а магнитное поле на таких участках контура считают однородным.

https://www.youtube.com/watch?v=ytadvertise

На одном дискретном участке вектор напряженности Um определяется по формуле: Um= HL×ΔL, где HL– циркуляция вектора напряжённости на участке ΔL контура L. Тогда суммарная напряжённость UL вдоль всего контура вычисляется по формуле: UL= Σ HL× ΔL.

Структуры

Есть только две возможные структуры, которые работали бы от этого. Либо поля направлены радиально в сторону или подальше от провода, или вокруг провода. Первая возможность — это то, что люди получают от электрически заряженного провода электрическое поле. Вторая возможность — это то, что можно получить магнитное поле, создаваемое током, через провода.

Для одиночного проводника формы поля имеют круговые структуры по центру провода, и сила поля убывает с расстоянием. Как шаблон, это очень похоже на рябь, которая образуется при падении камня в воду. Существует два основных различия между прудом и картиной магнитного поля. Первый – это то, что магнитное поле остается неизменным на заданном расстоянии.

Закон в интегральном представлении

Рассмотрим бесконечно прямой проводник, по которому циркулирует электрический ток, образующий поле, ограниченное контуром в виде окружности. Плоскость, пронизывающая проводник, – это круг, очерчённый линией данной окружности (см. рис. 1).

Поле бесконечно прямого тока
Рис. 1. Поле бесконечно прямого тока

Воспользуемся методом разбиения контура на мизерные участки dl (элементарные векторы длины контура).  Пусть φ – угол между векторами dl и B. В нашем случае, при суммировании отрезков, вектор индукции B поворачивается так, что он очерчивает круг, то есть угол φ → 2π.

Учитывая, что cos φ = 1,

Данная формула – постулат, подтверждённый экспериментально. Согласно этому постулату, циркуляция вектора B по окружности, то есть по замкнутому контуру, равна μ0I, где μ0 = 1/c2 ε0 – магнитная постоянная.

Ориентация вектора dB определяется путём применения правила буравчика. Это направление всегда перпендикулярно вектору плотности. Если проводников будет несколько (например, N), тогда

Каждый ток, с учётом знака, необходимо учитывать такое количество раз, которое соответствует числу его охватов контуром.

ЧИТАТЬ ДАЛЕЕ:  Инфракрасное отопление дома своими руками на основе ПЛЭН

Ток берётся со знаком « », если он по направлению обхода образует правовинтовую систему. При этом, отрицательным считается ток противоположного направления.

Заметим, что формула справедлива только для вакуума. В обычных условиях необходимо учитывать проницаемость среды.

Если ток распределён в пространстве (произвольный ток), тогда

Иллюстрация закона для вакуума
Рис. 2. Иллюстрация закона для вакуума

Отсюда вытекает:

  1. Закон справедлив не только для бесконечно прямолинейного проводника, но и для контуров, произвольной конфигурации.
  2. Циркуляция вектора магнитной индукции B сориентированного вдоль магнитных линий, всегда отлична от нуля.
  3. Ненулевая циркуляция свидетельствует о том, что магнитное поле прямолинейного, бесконечно длинного проводника не потенциально. Такое поле называют вихревым, либо соленоидным.

Сила тока и расстояние

Следующая часть закона Ампера гласит, что сила магнитного поля зависит от силы тока и расстояния от провода. В результате получается, что, если умножить силу магнитного поля на окружность круга, этот продукт будет пропорционален силе электрического тока. То есть, если удвоить расстояние от провода, линия окружности удваивается, а величина магнитного поля падает в 2 раза.

Но закон Ампера позволяет разобраться с токами, которые производятся в системах более сложных, чем одиночный провод. Но все эти случаи эквивалентны. Это означает, что идея магнитной напряженности поля, умноженной на длину пути, остается полезной и по-прежнему зависит от суммы всех токов внутри контура, который образует путь.

Влияние среды

где H — напряжённость магнитного поля, символом μ обозначена магнитная проницаемость.

Носители электрических зарядов создают собственные микротоки. Циркуляция вектора, характеризующего электростатическое поле, всегда нулевая. Поэтому электростатические поля, в отличие от магнитных, являются потенциальными.

Вектор B отображает результирующее значение полей макро- и микротоков. Линии электростатической индукции всегда остаются замкнутыми, в том числе и на положительных зарядах.

Закон полного тока в веществе
Рис. 3. Закон полного тока в веществе

Для полей, которые действуют в среде, состоящей из разных веществ, необходимо учитывать микротоки, характерные именно для конкретных структур, образующих данную среду.

Утверждение, изложенное выше, верно для полей соленоидов или любой другой структуры, обладающей свойствами конечной магнитной проницаемости.

Пропорциональность суммарному току

https://www.youtube.com/watch?v=ytcreators

В интегральной форме закона Ампера используется понятие линейного интеграла. В принципе, можно выбрать определенный цикл (т. е. замкнутый путь через космос) и пройтись вдоль петли, сложить составляющие магнитного поля. Это покажет, насколько магнитное поле вьется вокруг поверхности, ограниченной петлей. Утверждение, что эта величина пропорциональна суммарному току, который ограничен петлей, верно.

Чтобы понять это, нужно рассмотреть контур, ограничивающий провод. Если выполнить петлю вокруг провода, магнитное поле всегда идет к точке в том же направлении, что означает, что общая сумма криволинейного интеграла будет положительной. Это говорит, что можно пройти вокруг тока! Кроме того, можно определить направление тока, используя правило правой руки. Если поток тока пошел в другом направлении, значение криволинейного интеграла переворачивается.

ЧИТАТЬ ДАЛЕЕ:  Как подключить интернет розетку - все варианты подключения

Теперь можно предположить, что взят цикл, в котором не подкладывают проволоку, но делают круг против часовой стрелки над проводом. Если пройтись вокруг нижней части петли, в большинстве случаев направление будет идти против течения, поэтому вклад в интеграл будет отрицательным. Но когда направление проходит вокруг верхней части петли, в большинстве случаев оно будет такое же, что и ток, так что вклад будет положительным. Это говорит, что нет ничего внутри цикла (либо нет тока вообще, или течения токов в противоположных направлениях компенсируют друг друга).

Выводы

На основании изложенного, приходим к заключению:

  1. Закон полного тока устанавливает зависимость между напряжённостью магнитного поля и перемещением в этом поле электрических зарядов.
  2. Действие закона распространяется на все среды, при допустимых плотностях тока.
  3. Закон также выполняется в полях постоянных магнитов.

При вычислениях не имеет значения, какую формулу мы используем – суть закона остаётся неизменной: он выражает взаимодействия, которые происходят между токами и создаваемыми ими магнитными полями, пронизывающими замкнутый контур.

Выводы закона учитываются при конструировании электромагнитных устройств. Наличие завихрений в электромагнитных полях приводит к снижению КПД. Кроме того, вихревые поля негативно влияют на работоспособность электронных элементов, расположенных в зоне их действий.

Конструкторы электротехнических приборов стремятся свести к минимуму таких влияний. Например, вместо обычных соленоидов применяют тороидальные катушки, за пределами которых отсутствуют электромагнитные поля.

Дифференциал

В дифференциальной форме применение закона Ампера происходит в концепции завитков векторной области. Локон — это количественное измерение, векторное поле — это «керлинг» вокруг данной точки. Если брать все меньшие и меньшие циклы вокруг точки и вычислить криволинейный интеграл, результат должен стать примерно пропорциональным площади петли. Коэффициентом пропорциональности является завиток.

Если взять цикл, который не содержат провода, криволинейный интеграл всегда будет равен нулю. Если петли все дальше и дальше, он всегда будет равен нулю. Коэффициент пропорциональности будет равен нулю, и ротор будет равен нолю (если быть точным, то нулевой вектор). Но если находиться внутри провода, то, независимо от того, какие петли, он будет получать ток, протекающий через него.

Идея заключается в том, что для бесконечно малого контура только плотность тока в этот момент будет «внутри» него, а так только плотность тока в этой точке будет определять значение криволинейного интеграла. Поэтому ротор должен быть пропорционален плотности тока в данной точке, так как он соотносится по значению криволинейного интеграла по бесконечно малой петле.

Оцените статью
MALIVICE.RU