Управление двигателем постоянного тока с применением драйвера L298N и Arduino UNO

L298N и шаговый двигатель

Данный модуль дает возможность управлять одним или двумя двигателями постоянного тока. Для начала, подключите двигатели к пинам A и B на контроллере L298N.

Если вы используете в проекте несколько двигателей, убедитесь, что у них выдержана одинаковая полярность при подключении. Иначе, при задании движения, например, по часовой стрелке, один из них будет вращаться в противоположном направлении. Поверьте, с точки зрения программирования Arduino это неудобно.

После этого подключите источник питания. Плюс — к четвертому пину на L298N, минус (GND) — к 5 пину. Если ваш источник питания до 12 вольт, коннектор, отмеченный 3 на рисунке выше, можно оставить. При этом будет возможность использовать 5 вольтовый пин 6 с модуля.

Данный пин можно использовать для питания Arduino. При этом не забудьте подключить пин GND с микроконтроллера к 5 пину на L298N для замыкания цепи. Теперь вам понадобится 6 цифровых пинов на Arduino. Причем некоторые пины должны поддерживать ШИМ-модуляцию.

zip

ШИМ-пины обозначены знаком “~” рядом с порядковым номером.

 Схема подключения Контроллера L298N к Arduino

Теперь подключите цифровые пины Arduino к драйверу. В нашем примере два двигателя постоянного тока, так что цифровые пины D9, D8, D7 и D6 будут подключены к пинам IN1, IN2, IN3 и IN4 соответственно. После этого подключите пин D10 к пину 7 на L298N (предварительно убрав коннектор) и D5 к пину 12 (опять таки, убрав коннектор).

Направление вращения ротора двигателя управляется сигналами HIGH или LOW на каждый привод (или канал). Например, для первого мотора, HIGH на IN1 и LOW на IN2 обеспечит вращение в одном направлении, а LOW и HIGH заставит вращаться в противоположную сторону.

ЧИТАТЬ ДАЛЕЕ:  Клещи для обжима наконечников проводов

При этом двигатели не будут вращаться, пока не будет сигнала HIGH на пине 7 для первого двигателя или на 12 пине для второго. Остановить их вращение можно подачей сигнала LOW на те же указанные выше пины. Для управления скоростью вращения используется ШИМ-сигнал.

Скетч приведенный ниже, отрабатывает в соответствии со схемой подключения, которую мы рассматривали выше. Двигатели постоянного тока и Arduino питаются от внешнего источника питания.

Sketch code

// подключите пины контроллера к цифровым пинам Arduino

// первый двигатель

int enA = 10;

int in1 = 9;

int in2 = 8;

// второй двигатель

int enB = 5;

int in3 = 7;

int in4 = 6;

void setup()

{

// инициализируем все пины для управления двигателями как outputs

pinMode(enA, OUTPUT);

pinMode(enB, OUTPUT);

pinMode(in1, OUTPUT);

pinMode(in2, OUTPUT);

pinMode(in3, OUTPUT);

pinMode(in4, OUTPUT);

}

void demoOne()

{

// эта функция обеспечит вращение двигателей в двух направлениях на установленной скорости

// запуск двигателя A

digitalWrite(in1, HIGH);

digitalWrite(in2, LOW);

// устанавливаем скорость 200 из доступного диапазона 0~255

analogWrite(enA, 200);

// запуск двигателя B

digitalWrite(in3, HIGH);

digitalWrite(in4, LOW);

// устанавливаем скорость 200 из доступного диапазона 0~255

analogWrite(enB, 200);

delay(2000);

// меняем направление вращения двигателей

digitalWrite(in1, LOW);

digitalWrite(in2, HIGH);

digitalWrite(in3, LOW);

digitalWrite(in4, HIGH);

delay(2000);

// выключаем двигатели

digitalWrite(in1, LOW);

digitalWrite(in2, LOW);

digitalWrite(in3, LOW);

digitalWrite(in4, LOW);

}

void demoTwo()

{

// эта функция обеспечивает работу двигателей во всем диапазоне возможных скоростей

// обратите внимание, что максимальная скорость определяется самим двигателем и напряжением питания

// ШИМ-значения генерируются функцией analogWrite()

// и зависят от вашей платы управления

// запускают двигатели

digitalWrite(in1, LOW);

digitalWrite(in2, HIGH);

digitalWrite(in3, LOW);

digitalWrite(in4, HIGH);

// ускорение от нуля до максимального значения

ЧИТАТЬ ДАЛЕЕ:  Как сделать удобные полки и стеллажи для гаража своими руками из дерева и металла

for (int i = 0; i {amp}lt; 256; i )

{

analogWrite(enA, i);

analogWrite(enB, i);

delay(20);

}

// торможение от максимального значения к минимальному

for (int i = 255; i {amp}gt;= 0; —i)

{

analogWrite(enA, i);

analogWrite(enB, i);

delay(20);

}

// теперь отключаем моторы

digitalWrite(in1, LOW);

digitalWrite(in2, LOW);

digitalWrite(in3, LOW);

digitalWrite(in4, LOW);

}

void loop()

{

demoOne();

delay(1000);

demoTwo();

delay(1000);

}

Для нашего примера мы используем шаговый двигатель Nema 17, у которого четыре кабеля для подключения.

 шаговый двигатель

Этот двигатель имеет 200 шагов на оборот и может работать с частотой вращения 60 об/мин. Если вы используете другой шаговый двигатель, уточните шаг его шаг и максимальную частоту вращения. Эти параметры понадобятся вам при программировании Arduino.

Еще один важный момент — определить какие именно кабели соответствуют A , A-, B и B-. В нашем примере соответствующие цвета кабелей: красный, зеленый, желтый и голубой. Переходим к подключению.

Кабели A , A-, B и B- от шагового двигателя подключаем к пинам 1, 2, 13 и 14 соответственно. Контакты на коннекторах 7 и 12 на контроллере L298N оставьте замкнутыми. После этого подключите источник питания к пину 4 (плюс) и 5 (минус) на контроллере.

Опять таки, если источник питания меньше 12 вольт, контакт, отмеченный 3 на рисунке модуля, можно оставить замкнутым. После этого, подключите пины модуля L298N IN1, IN2, IN3 и IN4 к соответствующим цифровым пинам D8, D9, D10 и D11 на Arduino.

Теперь подключаем GND пин с Arduino к пину 5 на контроллере, а 5V к 6 пину на модуле. С управлением шагового двигателя проблем быть не должно благодаря встроенной в Arduino IDE библиотеке Stepper Library.

Схема подключения L298N и шагового двигателя к Arduino

Для проверки работоспособности просто загрузите скетч stepper_oneRevolution, который входит в состав библиотеки. Данный пример находится в меню

ЧИТАТЬ ДАЛЕЕ:  Коронка по дереву: размеры и виды насадок, особенности применения

File {amp}gt; Examples {amp}gt; Stepper в Arduino IDE.

Как подключить моторчик к Arduino

Для занятия нам понадобятся следующие детали:

  • плата Arduino Uno / Arduino Nano / Arduino Mega;
  • мотор постоянного тока (Motor DC);
  • транзистор полевой/биполярный;
  • драйвер двигателей L298N;
  • провода «папа-папа», «папа-мама».

Перед выбором способа управления двигателем от Arduino Uno r3, уточните на какое напряжение рассчитан ваш моторчик. Если питание требуется более 5 Вольт, то следует использовать транзистор или драйвер. Распиновка транзисторов может отличаться от приведенного примера (следует уточнить распиновку для своего типа). Драйвер L298N позволит не только включать мотор, но и изменять направление вращения.

Схема. Управление моторчиком от Ардуино напрямую
Схема. Управление моторчиком от Ардуино напрямую

Подключение мотора к Ардуино напрямую — самый простой вариант включения вентилятора на Arduino или машинки. Команда для включения двигателя не отличается, от команды при подключении светодиода к микроконтроллеру. Функция digitalWrite включает/выключает подачу напряжения на цифровой порт, к которому подключен двигатель постоянного тока. Соберите схему и загрузите программу.

voidsetup() {
   pinMode(12, OUTPUT); // объявляем пин 12 как выход
}

voidloop() {
   digitalWrite(12, HIGH); // включаем моторdelay(1000); // ждем 1 секундуdigitalWrite(12, LOW); // выключаем моторdelay(1000); // ждем 1 секунду
}

Оцените статью
MALIVICE.RU
Adblock
detector