Что такое однофазный трансформатор

Классификация однофазных трансформаторов

Любой однофазный трансформатор может работать только в цепях переменного тока. За счёт него полученное электрическое напряжение изменяется в нужную величину. Ток, полученный таким способом, повышается, в результате того, что мощность отдаётся в действительности без потерь. С этого и следует вывод, что основное использование такого прибора – вывести необходимое для решения задачи напряжение, после чего можно применять в определённых целях.

Вникнуть в работу прибора поможет детальный разбор конструкции трансформатора. Состоит он из следующих основных частей:

  • Сердечник, состоящий из материалов с ферромагнитными свойствами;
  • Две катушки, вторая находится на отдельном каркасе;
  • Защитный чехол (имеется не у всех моделей).

Трансформатор используется в преобразовании электроэнергии в сетях и в устройствах, используемых для получения и применения нужной величины электрической энергии. «Силовой» подразумевает его работу с высоким напряжением. Использование силовых трансформаторов вынуждается разными показателями рабочей мощности ЛЭП, сетей в городской полосе, выводящее напряжение для конечных объектов, а также для общей работы электрических устройств и машин. Мощность разнится от нескольких единиц вольт до сотен киловатт.

Автотрансформатор– один из видов преобразователя, где первичная и вторичная обмотки не разделены, а соединены друг с другом напрямую. Ввиду этого между ними образуется как электромагнитная, так и электрическая связь. Обмотка сопровождается как минимум тремя выводами, подсоединяясь к каждой из них, можно использовать разные мощности.

Трансформатор тока

Такой трансформатора используется в основном для уменьшения тока первичной обмотки до нужного значения, подходящего в применении цепей измерения, защиты, регулирования и сигнализации. Помимо этого используется в гальванической развязке (передача электроэнергии или сигнала связанными электрическими цепями, при этом электрический контакт между ними отсутствует).

ЧИТАТЬ ДАЛЕЕ:  Капает кран в ванной как починить

Нормируемое значение параметров тока вторичной обмотки – 1 А или 5 А. Первичная обмотка трансформатора подсоединяется ступенчато в цепь с нагрузкой, при этом переменный ток подвергается контролю, ко вторичной обмотке подключаются измерительные устройства.

Вторичной обмотке трансформатора тока необходимо постоянно находиться в режиме около короткого замыкания. Ведь при любом варианте разъединения цепи на неё поступает высокая мощность, способная выбить изоляцию и выхода из строя включённых приборов.

Высоковольтный ТТ(слева) и низковольтный ТТ(справа)
Высоковольтный ТТ(слева) и низковольтный ТТ(справа)

Читать более подробно про трансформатор тока.

Такой трансформатор получает энергию от источника напряжения. Используется в основном для изменения высокого напряжения в низкое в различных цепях, в том числе измерительных и релейной защиты и автоматики. Имеет возможность проводить изоляцию цепей защиты и измерения от цепей повышенной мощности.

трансформатор напряжения
Высоковольтный ТН(слева) и низковольтный ТН(справа)

Читать более подробно про ТН.

Применяется для изменения импульсных сигналов с откликом импульса в точности до десятков микросекунд. При этом форма импульса сопровождается лишь незначительным искажением. Главным назначением импульсного трансформатора является передача прямоугольного электрического импульса. Используется для преобразования коротких видеоимпульсов напряжения, зачастую воспроизводящихся с высокой скважностью.

Важный параметр при использовании импульсного трансформатора – это неискажённый вид передачи импульсных систем напряжения. При влиянии на вход устройства мощности, отличающейся друг от друга, важно получить напряжение, в точности совпадающее с той же самой формой, разве что, с другой амплитудой или различающейся полярностью.

Виды трансформаторов
Виды импульсных трансформаторов

Читать более подробно про импульсный трансформатор.

Принцип работы

Однофазный трансформатор работает на определённом законе, ввиду которого идущее в витке переменное электромагнитное поле наводит электродвижущую силу в расположенном рядом проводнике. Действие названо законом электромагнитной индукции, которое было открыто Майклом Фарадеем в 1831 году. В результате обоснования закона учёный создал общую теорию, используемую в работе огромного числа современных электрических приборов.

При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в сердечнике (магнитопроводе) переменный магнитный поток. Замыкаясь в сердечнике, этот поток сцепляется с первичной и вторичной обмотками и индуцирует в них ЭДС, пропорциональные числу витков W.

Принцип работы трансформатора
Принцип работы трансформатора

В первичной обмотке ЭДС самоиндукции: во вторичной обмотке ЭДС взаимоиндукции: При подключение ко вторичной обмотке нагрузке потечет I2 и установиться U2.

Как и любой другой преобразователь, однофазный трансформатор имеет три режима работы:

  1. Режим холостого хода. Из названия понятно, что ток проходить не будет, в виду разомкнутой вторичной цепью устройства. А по первичной обмотке проходит холостой ток, основной элемент которого представлен реактивным током намагничивания. Режим используется в качестве определения КПД трансформатора, либо для вывода потерь в сердечнике.режимы работы
  2. Режим нагрузки. Режим определяется работой трансформатора с подсоединённым источником в первичной цепи, и определённой нагрузкой во вторичном канале устройства. Для вторичной цепи характерен протекающий ток нагрузки (посчитанного из отношения количества витков обмотки и вторичного тока) и ток холостого хода.
  3. Режим короткого замыкания. Режим действует в процессе замыкания вторичной цепи из-за разностей значения потенциала. В этом режиме получаемое сопротивление от вторичной обмотки будет одним источником нагрузки. При проведении короткого замыкания можно вычислить убыток на нагрев обмотки в цепи устройства.

Что такое однофазный трансформатор

1 – первичная обмотка трансформатора

2 – магнитопровод

3 – вторичная обмотка трансформатора

Ф – направление магнитного потока

U1 – напряжение на первичной обмотке

U2  – напряжение на вторичной обмотке

На картинке показан самый обычный однофазный трансформатор.

Магнитопровод состоит из пластинок специальной стали. По нему течет магнитный поток Ф (показано стрелками). Этот магнитный поток создается переменным напряжением первичной обмотки трансформатора. Снимается напряжение со вторичной обмотки трансформатора.

Конструкция однофазного трансформатора

Но как такое возможно? У нас ведь нет никакой связи между первичной и вторичной обмотками? Как может ток течь через разомкнутую цепь? Все дело именно в магнитном потоке, который создает первичная обмотка трансформатора. Вторичная обмотка “ловит” этот магнитный поток и преобразовывает его в переменное напряжение с такой же частотой.

В настоящее время трансформаторы создают в другом конструктивном исполнении. Такое исполнение имеет свои плюсы, такие как удобство намотки первичной и вторичной обмоток, а также меньшие габариты.

Его первичная обмотка  – это цифры 1, 2.

Вторичная обмотка – цифры 3, 4.

N1  – 2650 витков,

N2 – 18 витков.

Подключаем первичную обмотку трансформатора к 220 Вольтам

Ставим крутилку на мультиметре на измерения переменного тока и замеряем напряжение на первичной обмотке (напряжение сети).

Замеряем напряжение на вторичной обмотке.

Настало время проверить наши формулы

Что такое однофазный трансформатор

1.54/224=0.006875 (коэффициент отношения напряжения)

18/2650=0.006792 (коэффициент отношения обмоток)

Сравниваем числа… погрешность вообще копейки! Формула работает! Погрешность связана с потерями на нагрев обмоток трансформатора и магнитопровода, а также погрешность измерения мультиметра. Насчет силы тока работает простое правило: понижая напряжение, повышаем силу тока и наоборот, повышая напряжение, понижаем силу тока.

Работа трансформатора на холостом ходу подразумевает работу трансформатора без нагрузки на вторичной обмотке.

Нашим подопытным кроликом будет уже другой трансформатор

Вторичных обмоток здесь целых две пары, но мы будем использовать только одну.

Два красных провода – это первичная обмотка трансформатора. На эти провода мы будем подавать напряжение из сети 220 В.

Снимать напряжение будем со вторичной обмотки с двух синих проводов.

Для того, чтобы произвести замеры, нам потребуется выставить на мультиметре крутилку на измерение переменного напряжения.Если вы не знаете, как измерять переменное напряжение и силу тока, рекомендую прочитать вот эту статью.

Замеряем напряжение на первичной обмотке трансформатора, куда мы подаем 220 В.

Мультиметр показывает 230 В. Ну что же, бывает).

Теперь замеряем напряжение на вторичной обмотке трансформатора

Получили 22 Вольта.

Интересно, а какую силу тока потребляет из розетки наш трансформатор  при холостом режиме?

Мультиметр показал 60 миллиампер. Оно и понятно, ведь наш трансформатор не идеальный.

Как вы видите,  на вторичной обмотке трансформатора нет никакой нагрузки, но он все равно “кушает” силу тока, а следовательно и электрическую энергию из сети. Если сосчитать мощность, то получим P=IU=230×0,06=13,8 Ватт. А если у нас он простоит включенным хотя бы часик, то у нас он съест электроэнергию 13,8 Ватт* час или 0,0138кВатт*час.

Опыт №1

Работа трансформатора под нагрузкой подразумевает режим, при котором к его вторичной обмотке цепляется нагрузка. Для этого последовательно соединяем две лампы накаливания по 13,5 Вольт. В этом случае напряжение будет падать поровну на каждой из ламп накаливания, так как мы соединили их последовательно. Почему так получается, читайте статью про делитель напряжения.

Интересно, а поменяется ли сила тока на первичной обмотке, если мы нагрузим вторичную обмотку нашими лампочками? Лампочки загорелись, а сила тока на первичной обмотке тоже поменялась 😉

Если растет сила тока в цепи вторичной обмотки трансформатора, то растет и сила тока в цепи первичной обмотки.

Опыт №2

Давайте проведем еще один опыт. Для этого замеряем напряжение без нагрузки на вторичной обмотке трансформатора, так называемый – холостой режим работы

а теперь подсоединяем наши лампочки и снова замеряем напряжение

Ого, напряжение просело на 0,2 В.

Давайте замеряем силу тока во вторичной обмотке с лампочками

Получили 105 миллиампер.

Все те же самые аналогичные операции проводим и для мощного резистора номиналом в 10 Ом и мощностью рассеивания в 10 Ватт. Замеряем напряжение на вторичной обмотке, при включении резистора

Получили 18,9 В. Видели, как сильно просело напряжение? Если на холостом ходу было 22,2 В, то сейчас стало 18,9 В !

Интересно, какая сила тока течет во вторичной цепи, в которой включен резистор

Ого-го, почти 2 Ампера.

Вывод: при включении нагрузки происходит просадка напряжения. Напряжение падает тем больше, чем больше силы тока потребляет нагрузка. Здесь также играет роль еще один немаловажный фактор – мощность трансформатора. Чем больше мощность трансформатора, тем меньше будет просадка напряжения. Мощность трансформатора зависит от его габаритов.

Трансформаторы – это название огромного «семейства», куда входят однофазные, трехфазные, понижающие, повышающие, измерительные и множество других типов трансформаторов. Основное их назначение – преобразование одного или нескольких напряжений переменного тока в другое на основе электромагнитной индукции при неизменной частоте.

Итак, кратко, как работает простейший однофазный трансформатор. Он состоит из трех основных элементов – первичной и вторичной обмоток и объединяющего их в единое целое магнитопровода, на который они как бы нанизаны. Источник подключается исключительно к первичной обмотке, в то время, как вторичная снимает и передает уже измененное напряжение потребителю.

Подключенная к сети первичная обмотка создает в магнитопроводе переменное электромагнитное поле и формирует магнитный поток, который начинает циркулировать между обмотками, индуцируя в них электродвижущую силу (ЭДС). Ее величина зависит от числа витков в обмотках. К примеру, для понижения напряжения необходимо, чтобы в первичной обмотке витков было больше, чем во вторичной. Именно по такому принципу работают понижающие и повышающие трансформаторы.

Важная особенность конструкции трансформатора состоит в том, что магнитопровод имеет стальную структуру, а обмотки, как правило имеющие форму цилиндра, изолированы от него, непосредственно не связаны друг с другом и имеют свою маркировку.

Формула трансформатора

Так от чего же зависит напряжение, которое выдает нам трансформатор на вторичной обмотке? А зависит оно от витков, которые намотаны на первичной и вторичной обмотке !

однофазный трансформатор

N1 – количество витков первичной обмотки

N2 – количество витков  вторичной обмотки

I1 – сила тока первичной обмотки

I2 –  сила тока вторичной обмотки

Эта формула справедлива для идеального трансформатора. Реальный же трансформатор будет выдавать на выходе чуть меньше мощности, чем на его входе. КПД трансформаторов очень высок и порой составляет даже 98%.

Виды трансформаторов по выходному напряжению

Это, пожалуй, наиболее многочисленная разновидность семейства трансформаторов. В двух словах, их основная функция – сделать произведенную на электростанциях энергию доступной для потребления различными устройствами. Для этого существует система передачи электроэнергии, состоящая из повышающих и понижающих трансформаторных подстанций и линий электропередач.

Вначале электроэнергия, произведенная электростанцией, подается на повышающую трансформаторную подстанцию (к примеру, с 12 до 500 кВ). Это необходимо для того, чтобы компенсировать неизбежные потери электроэнергии при передаче на большие расстояния.

Следующий этап – понижающая подстанция, откуда электроэнергия уже по низковольтной линии подается на понижающий трансформатор и далее к потребителю в виде напряжения 220 в.

Но на этом работа трансформаторов не заканчивается. В большинстве окружающих нас бытовых электроприборов — в ПК, телевизорах, принтерах, стиральных машинах-автоматах, холодильниках, микроволновых печах, DVD и даже в энергосберегающих лампочках установлены понижающие трансформаторы. Пример индивидуального «карманного» трансформатора – зарядное устройство мобильного телефона (смартфона).

Гигантскому разнообразию современных электронных устройств и выполняемых ими функций соответствует множество различных типов трансформаторов. Это далеко не полный их список: силовые, импульсные, сварочные, разделительные, согласующие, вращающиеся, трехфазные, пик-трансформаторы, трансформаторы тока, тороидальные, стержневые и броневые.

Это трансформатор, которые понижает напряжение. Допустим, на первичную обмотку заходит 220 В, а на вторичной у нас получается 12 В. То есть мы большее напряжение преобразовали в меньшее напряжение.

Это трансформатор, который  повышает напряжение. Тут тоже все до боли просто. Допустим,  на первичную обмотку мы подаем 10 Вольт, а со вторичной снимаем уже 110 В. То есть мы повысили наше напряжение в несколько раз.

Такой трансформатор используется для согласования входного и выходного сопротивления между каскадами схем.

Такой трансформатор используется в целях электробезопасности. В основном это трансформатор с одинаковым числом обмоток на входе и выходе, то есть его напряжение на первичной обмотке будет равняться напряжению на вторичной обмотке. Нулевой вывод вторичной обмотки такого трансформатора не заземлен. Поэтому, при касании фазы на таком трансформаторе вас не ударит электрическим током. Про его использование можете прочесть в статье про ЛАТР.

Коэффициент трансформации

Трансформаторы бывают повышающие и понижающие, что бы это определить нужно узнать коэффициент трансформации, с его помощью можно узнать какой трансформатор. Если коэффициент меньше 1 то трансформатор повышающий(также это можно определить по значениям если во вторичной обмотке больше чем в первичной то такой повышающий) и наоборот если К{amp}gt;1, то понижающий(если в первичной обмотке меньше витков чем во вторичной).

Формула по вычислению коэффициента трансформации
Формула по вычислению коэффициента трансформации
  • U1 и U2 — напряжение в первичной и вторичной обмотки,
  • N1 и N2 — количество витков в первичной и вторичной обмотке,
  • I1 и I2 — ток в первичной и вторичной обмотки.

Более подробно про расчёт коэффициента трансформации.

Как проверить трансформатор

Хотя обмотки  прилегают очень плотно к друг другу, их разделяет лаковый диэлектрик, которым покрываются и первичная и вторичная обмотка. Если где-то возникло короткое замыкание, то трансформатор будет сильно греться или издавать сильный гул при работе. В этом случае стоит замерить напряжение на вторичной обмотке и сравнить, чтобы оно совпадало с паспортным значением.

При  обрыве все намного проще. Для этого с помощью мультиметра мы проверяем целостность первичной и вторичной обмотки.

На фото ниже я проверяю целостность первичной обмотки, которая состоит из 2650 витков. Сопротивление есть? Значит все ОК. Обмотка не в обрыве. Если бы  она была в обрыве, мультиметр показал бы на дисплее “1”.

Таким же способом проверяем и вторичную обмотку, которая состоит из 18 витков

Особенности

Как правило, однофазные трансформаторы используют в электрических сетях и в роли источников питания различных устройствах.

Исходя из того факта, что нагрев провода прямо пропорционален квадрату току, идущего через провод, то при передаче энергии на дальние расстояния выгоднее будет использовать высокие напряжения и небольшие токи. Для исключения повреждений электроприборов и уменьшения объёма изоляции в домашних условиях лучше использовать низкие мощности.

Ввиду этого, для уменьшения затрат на транспортировку электрической энергии в общей электросети в большом количестве применяются силовые трансформаторы: вначале увеличивают напряжение генераторов на электростанциях перед передачей энергии по кабелю, а уже после транспортировки уменьшают напряжение линий электропередач до нужного уровня в повсеместном использовании.

однофазный трансформатор
Однофазные трансформаторы

Эксплуатация

При использовании однофазных трансформаторов технике безопасности отводится особое место. Обусловлено это тем, что устройство находится под высоким напряжением, находящимся на первичных обмотках. При подключении и установке трансформатора в электрические схемы важно соблюдать ряд правил, для исключения поломок и нарушений работы прибора:

  • Чтобы обмотки не выходили из строя (выгорали), необходимо поставить защиту от короткого замыкания на вторичной цепи;
  • Необходимо контролировать температурный режим сердечника и обмоток. Желательно установить систему охлаждения, предусматривающую исключение критического повышения температуры при работе.

В случае различной нагрузки от электросети изменяется и её напряжение. Для стабильной работы устройств, получающих энергию, необходимо, чтобы напряжение не изменялось от установленного уровня выше допустимого диапазона. Ввиду этого допускается использование методов регулирования напряжения в сети.

Оцените статью
MALIVICE.RU