Принцип работы и применение управляемого тиристора

Устройство и виды полупроводниковых приборов

Прежде чем рассматривать принцип работы тиристоров в цепях, необходимо разобраться с тем, как они устроены, какие виды существуют. Состоят они из четырех последовательно соединенных слоев, которые имеют разный тип проводимости. С внешней стороны есть контакты – анод и катод. Приборы могут обладать двумя управляющими электродами, прикрепленными к внутренним слоям. Изменения состояния удается добиться за счет подачи сигнала непосредственно на проводник.

Различают два основных вида тиристоров:

  1. Динисторы представляют собой диодные полупроводниковые приборы. В данном случае открывание осуществляется посредством подачи высокого напряжения между контактами.
  2. Тринисторы – это триодные аналоги. Их удается открывать за счет воздействия управляющего тока на электрод.

Процесс запирания может производиться двумя способами. Первый из них подразумевает снижение электрического тока ниже уровня удержания. Вариант применим для всех видов тиристоров. Второй способ заключается в нагнетании запирающего напряжения непосредственно на управляющий контакт. Он используется только для тринисторов запираемого типа.

Конструкция

Конструктивно тиристор КУ202Н и вся серия выполнены в металлическом корпусе из медного сплава с покрытием, который имеет выводы под резьбу и два вывода под пайку различной толщины и высоты. Размер резьбового отвода или анода (А) составляет М6 под гайку. Выводы выполнены жесткими путем заливки эпоксидной смолой, но при выполнении монтажа не следует применять усилия более 0,98 Н.

Схема тиристора

При выполнении пайки силового вывода (К) необходимо соблюдать минимальное расстояние до стекла не менее 7 мм , так как высокой температурой его целостность может нарушиться. При выполнении подключения управляющего вывода (УЭ) следует выдержать расстояние до стекла не менее 3,5 мм по той же причине. При этом общее время удерживания паяльника не рекомендуется превышать более 3 с. Эффективная температура жала паяльного инструмента не должна превышать 260 градусов.

Режим обратного запирания

Рассматривая принцип работы тиристора, следует понимать, что элементы могут быть классифицированы по обратному напряжению.

Всего существует четыре варианта изделий:

  1. Обратно-проводящие приборы обладают небольшим обратным напряжением. Оно составляет всего несколько вольт.
  2. Элементы, не проводящие напряжение в обратном направлении в закрытом состоянии.
  3. Симисторы представляют собой симметричные приборы, которые коммутируют электрические токи в том или ином направлении.
  4. Изделия с ненормированным напряжением обратного направления.

Используя симисторы, необходимо помнить, что они функционируют симметрично лишь на первый взгляд. При подаче отрицательного (на анод) и положительного (на управляющий электрод) напряжения они не способны открываться, а в некоторых случаях могут выходить из строя.

В электронике симисторы относят к управляемым тиристорам, принцип работы которых заключается в коммутации цепей переменного тока. При проектировании таких схем, необходимо изучать документацию конкретного изделия, чтобы определить, какие сигналы допустимы. Отдельные виды симисторов могут иметь некоторые ограничения.

Рассказывая о принципе работы триодного тиристора, нельзя не отметить, что оно может работать в разных режимах. При обратном запирании непосредственно к аноду полупроводника приложено отрицательное напряжение по отношению к катодному контакту. Переходы при таком варианте смещены в противоположном направлении.

Существуют факторы, ограничивающие применение подобного режима. Первый из них – это лавинный пробой, а второй – прокол обедненной области. Это объясняется тем, что существенная часть напряжения снижается на одном из переходов. Возникает их смыкание или происходит пробой.

Принцип работы тиристора в режиме прямого запирания предполагает обратное смещение одного из переходов. Противоположные слои сдвинуты в прямом направлении. Основная часть приложенного напряжения снижается на единичном переходе. Через остальные слои в соприкасающиеся области инжектируются носители, позволяющие уменьшить сопротивление на проводящем элементе. Происходит увеличение проходящего тока. Падение напряжения уменьшается.

Увеличение прямого напряжения приводит к медленному росту электрического тока. В таком режиме полупроводник считается запертым, что связано с повышенным сопротивлением единичного перехода. При некотором показателе напряжения процесс начинает приобретать лавинообразный характер. Прибор переходит во включенное состояние, в нем устанавливается электрический ток, который зависит от источника и сопротивления цепи.

Особенности схемного подключения

Тиристор предназначен для коммутации напряжения в различных устройствах. Но при этом имеется стандартная схема его подключения, которую нарушать крайне не рекомендуется. Например, между катодом (вывод под пайку) и управляющим электродом необходимо подключить резистор в качестве шунтирующего компонента. Благодаря его присутствию управляющая цепь замыкается и обеспечивается насыщение перехода. Его сопротивление должно быть не более и не менее 51 Ом.

ЧИТАТЬ ДАЛЕЕ:  Рейтинг сплит-систем Hisense ТОП-10 лучших на рынке на что смотреть при покупке

Если на аноде присутствует напряжение отрицательной полярности, то управляющий ток должен быть равен нулю. Иначе произойдет электрический пробой перехода, что приведет к неисправности всего устройства в целом. Дальнейшая его работа невозможна, как и обратное восстановление.

Принцип работы

Принцип работы и применение управляемого тиристора

Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».

Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.

В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.

Конструкция прибора

Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.

Основообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.

Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.

Режимы работы

Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.

Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.

Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.

Работа транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.

Если объяснять принцип работы тиристора простым языком, то он заключается во включении полупроводникового прибора посредством подачи импульса электрического тока непосредственно в цепь управления положительной полярности. На продолжительность переходного процесса существенно влияет характер производимой нагрузки, а также другие факторы:

  • скорость и амплитуда созданного импульса;
  • температура полупроводниковой конструкции;
  • передаваемое напряжение;
  • ток нагрузки.

В цепи с тиристором при увеличении прямого напряжения не должно фиксироваться завышенных значений скорости нарастания. В противном случае может происходить непреднамеренное включение прибора без подачи сигнала. Однако крутизна производимого импульса не должна быть низкой.

Принцип работы и применение управляемого тиристора

Выключение элементов может происходить естественным или принудительным образом. В первом случае коммутация в системах переменного тока осуществляется в момент падения электрического тока до минимума. Что касается вариантов принудительного выключения, то оно может быть весьма разнообразным:

  1. Подключение специализированной цепи с наличием заряженного конденсатора вызывает возникновение разряда на проводящий элемент. Встречный поток снижает ток до нуля, поэтому прибор выключается.
  2. Подключение контура, вызывающего колебательный разряд, позволяет пропустить электричество через тиристор на встречу прямому току. При достижении равновесия происходит выключение.
  3. Переходный процесс может вызываться при оказании комплексной нагрузки. При наличии определенных параметров возникает колебательный характер, подразумевающий изменение полярности.

Теперь следует рассмотреть принцип работы тиристора в цепи, которая пропускает переменный ток. При его внедрении можно производить включение и отключение электрических сетей с активной нагрузкой, а также осуществлять изменение среднего и текущего значений тока путем регулировки подачи сигнала.

ЧИТАТЬ ДАЛЕЕ:  Облицовка сайдингом: плюсы и минусы

Не новость даже для чайников – принцип работы тиристора заключается в пропускании электричества в одном направлении, поэтому в цепях с переменным током осуществляется встречно-параллельное включение. Значения могут варьироваться путем изменения самого момента подачи на приборы открывающих сигналов. Углы регулируются за счет системы управления.

  1. Фазовый метод регулировки с принудительной коммутацией предполагает применение специальных узлов.
  2. Широтно-импульсное управление подразумевает отсутствие сигнала в закрытом состоянии и его наличие в открытом положении, когда к нагрузке приложено определенное напряжение.

Технические характеристики

Области применения полупроводника разнообразны. В зависимости от того, для чего нужен тиристор, подбирается деталь с требуемыми техническими данными. Выбрать необходимый тип полупроводникового триода помогут рабочие параметры устройства:

  1. Максимальный ток от анода к катоду.
  2. Наибольшая величина обратного тока указывается только для типов, обладающих такой функцией.
  3. Технические характеристики тиристоровМаксимальное прямоточное напряжение в положении «открыто».
  4. Минимальные напряжение и сила тока раскрытия p — n перехода.
  5. Предельный уровень сигнального тока, приводящий к пробою тиристора.
  6. Ток удержания определяет уровень, ниже которого наступает состояние «закрыто».
  7. Мощность указывает величину допустимой нагрузки.
  8. Время срабатывания.

Тиристор КУ202Н относится к группе высоковольтных устройств, предназначенных для работы при напряжении до 400 В с максимально допустимым прямым током в открытом состоянии не более 10 А. Всего в линейке имеется 12 моделей тиристоров с различными напряжениями в закрытом состоянии. Поэтому при выборе основным параметром является именно оно.

Для использования в цепях с напряжением от 300 и выше вольт предназначены тиристоры с буквенными обозначениями от К до Н. Что касается остальных параметров, то они остаются теми же. Довольно часто новички радиолюбители сталкиваются с такими проблемами, что приводит к дополнительным растратам.

Эти тиристоры довольно часто применяются в построении регуляторов мощности нагрузкой не более 2 кВт. Но крайне не рекомендуется его эксплуатировать в критических режимах. Следует пропускать через устройство ток не более 7-8 А, что будет обеспечивать наиболее эффективные и щадящие режимы.

Проверка в режиме коммутации

Чтобы убедиться в работоспособности тиристора, достаточно собрать небольшую схему включения, состоящую из следующих компонентов:

  1. лампочки или светодиода с соответствующим резистором, если подключается к питанию 12В;
  2. источник малого напряжения, например, пальчиковая батарейка типа АА;
  3. несколько проводников и источник напряжения 12 В.

Для осуществления проверки выполняем следующие шаги:

  1. Подключаем нагрузку в цепь источник питания 12 В и А-К тиристора.
  2. Подаем отрицательное напряжение на выводы УЭ и А ( батарейки должен подключаться к А) на мгновенье.

Принцип работы и применение управляемого тиристора

После чего лампочка или светодиод загорится. Чтобы он потух, необходимо отключить коммутируемую цепь или сменить полярность управляющего напряжения. Такой режим считается нормальным для работы и может применяться при любых постоянных напряжениях коммутации в разрешенных пределах. В случае с тиристором КУ202Н оно не должно превышать 400 В.

Простые схемы управления КУ202Н

Как и любые другие устройства, отечественный тиристор КУ202 имеет зарубежный аналог, который по своим параметрам относится к той же категории компонентов. Зарубежные производители давно ушли от производства такого форм-фактора по мощности тиристоров в металлическом корпусе. На рынке будут доступны только элементы в корпусе транзистора ТО220. Поэтому в любом случае придется внести конструктивные изменения в плату и монтажное место в частности.

Параметры незначительно отличаются от вышеописанного компонента, и средний ток в том числе, равен 7,5 А. Также можно применить в схемах более новый российский элемент Т112-10. Он имеет также металлический корпус с резьбовым отводом, но его размеры будут несколько меньше.

На тиристор КУ202Н схема управления достаточно простая. Первый вариант был описан в разделе проверки устройства. Она включала батарейку на 1,5 В, лампочку и источник питания 12 В. Но также существует масса других способов элементарного подключения тиристора. Рассмотрим самую простую схему на его базе.

Двухтранзисторная модель

Для объяснения устройства и принципа работы тиристора в режиме прямого запирания применяется двухтранзисторная модель. Данный полупроводниковый прибор можно рассматривать как два совмещенных транзистора с противоположными выводами. Переход в центре используется в качестве коллектора дырок и электронов, которые инжектируются определенными переходами.

Соотношения не изменяются при протекании токов в противоположном направлении. При повышении коэффициента в замкнутой петле происходит лавинообразный процесс, подразумевающий увеличение тока непосредственно через структуру. Электрический ток ограничен лишь сопротивлением наружной цепи.

ЧИТАТЬ ДАЛЕЕ:  Битумная мастика для гидроизоляции фундамента своими руками

Регулятор мощности

В схеме реализован принцип частотно-импульсного регулирования угла отпирания тиристоров за счет синхронизации с сетью. Такое управление является наиболее эффективным и надежным, так как тиристор работает в нормальных режимах без завышения своих возможностей.

В схеме имеется генератор, который формирует импульсы управления и сдвигает их относительно фронтов импульсов при переходе сетевого напряжения через ноль. Управляющая последовательность импульсов подается на УЭ и К. Напряжение в нагрузке выпрямляется при помощи двухполупериодного выпрямителя. Использование емкостей в схеме в качестве фильтров недопустимо, так как они будут нарушать главный принцип работы устройства.

Чем различаются динисторы и тринисторы

Принципиальных отличий между характеристиками и принципом работы тиристоров нельзя найти. Однако открытие динистора производится при наличии определенного напряжения между двумя основными выводами. Оно зависит от типа используемого устройства. В случае с тринистором напряжение открытия удается снизить принудительным образом.

Для определения работоспособности динистора может потребоваться источник питания с напряжением, превышающим напряжение включения динистора.

Для ограничения тока потребуется резистор на 100-1000 Ом. Теперь можно подключать плюс источника к аноду, а катод к одному из выводов ограничивающего резистора.

Второй конец сопротивления подключается к минусу источника питания. До этого необходимо мультиметр в режиме измерения постоянного напряжения подключить к аноду и катоду.

Значения тестера должны лежать в пределах милливольт. Динистор открылся.

Основные характеристики

Для проверки тринистора необходимо знать и понимать, что скрывается за основными параметрами и для чего их нужно измерять.

Отпирающее напряжение управления Uy – это постоянный потенциал на управляющем электроде, вызывающий открывание тиристора.

Uобр max – это максимальное обратное напряжение, при котором тиристор еще находится в рабочем состоянии.

Iос ср – это среднее значение протекающего через тиристор тока в прямом направлении с сохранением его работоспособности.

При выборе тиристоров обращают внимание на определенные параметры:

  1. Напряжение включения позволяет перевести полупроводниковый прибор в рабочее состояние.
  2. Временной интервал задержки запуска и остановки изделия.
  3. Уровень обратного тока при максимальном значении обратного напряжения.
  4. Показатель общей рассеивающей мощности.
  5. Прямое напряжение при предельном токе анода.
  6. Пиковый ток электрода, обеспечивающего управление.
  7. Обратное напряжение в закрытом состоянии.
  8. Максимальный открытый ток в открытом положении.

При выборе тиристора не следует забывать о предназначении прибора. На это непосредственное влияние оказывает временной интервал перехода в открытое или закрытое состояние. Как правило, период включения является более коротким, чем промежуток выключения.

Схемы с применением тиристоров

Тиристорные схемы подразделяются на четыре категории:

  1. Пороговые изделия используют возможности перехода полупроводников из одного положения в другое при наличии определенного напряжения. К таковым относятся генераторы колебаний и фазовые регуляторы нагрузки.
  2. Силовые ключи отличаются низкой мощностью. Ток рассеивается элементами в переключательных схемах в открытом состоянии. В закрытом положении электричество не пропускается.
  3. Коммутация постоянного напряжения вполне возможна при использовании приборов с большой мощностью. Есть несколько способов, позволяющих закрывать незапираемые элементы.
  4. Некоторые экспериментальные устройства работают с применением полупроводниковых приборов в переходных режимах, где имеются участки с отрицательным уровнем сопротивления.

Благодаря принципу работы тиристор используют в преобразователях напряжения и выпрямителях тока. Вместе с силовым трансформатором полупроводник способен изменять уровень тока. На этой основе собраны зарядные устройства автомобильных аккумуляторов, а также мощные электросварочные аппараты. Способность прибора изменять переменное напряжение на постоянное напряжение используется в преобразователях.

В устройствах сигнализации тиристор включается командой от внешнего датчика, изменяющего напряжение на управляющем электроде. Конструкции, которые контролируют окружающую обстановку, могут реагировать на изменение температурного режима или объёмного наполнения пространства. За освещённостью объекта наблюдает оптотиристор.

Поддержание заданного температурного режима в печи обеспечивается регулятором мощности дуги горения. В электрических двигателях скорость вращения ведущего вала контролирует тиристорный регулятор частоты хода.

Архимед обещал перевернуть Землю, если бы у него была точка опоры. Управляемый тиристорный полупроводник является тем рычагом, который расширяет области применения электронных устройств. Небольшая радиодеталь умножает возможности человека в развитии научно-технического прогресса.

Оцените статью
MALIVICE.RU
Adblock
detector