Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Содержание
  1. Виды термометров сопротивления, способы классификации
  2. Виды термодатчиков
  3. Виды термодатчиков
  4. Термистор: принцип работы
  5. Принцип действия
  6. Требования, предъявляемые к материалам термометров сопротивления.
  7. Полупроводниковые термометры сопротивления (терморезисторы).
  8. Отличия от термопары
  9. Термопреобразователи сопротивления. Устройство, характеристики, виды и типы, схемы термопреобразователей сопротивления ТСП, ТСМ, ТСПУ, ТСМУ.
  10. 1. Общие характеристики ТС
  11. Градуировка
  12. 2. Конструкция датчика ТС
  13. Термопреобразователи сопротивления. Устройство, характеристики, виды и типы, схемы термопреобразователей сопротивления ТСП, ТСМ, ТСПУ, ТСМУ.
  14. Двухпроводная
  15. Трехпроводная
  16. Четырехпроводная
  17. Термопреобразователи сопротивления. Контроль температуры
  18. Популярные производители
  19. 4. Удлинители
  20. 5. Варианты монтажа
  21. 6. Факторы, влияющие на эксплуатационные характеристики ТС
  22. 7. Самонагрев
  23. 9. Гистерезис
  24. Термопреобразователи сопротивления. Характеристики, расшифровка условного обозначения термопреобразователей сопротивления ТСМ, ТСП, ТСПУ, ТСМУ, Метран.
  25. 12. Уравнение Календар-Ван-Дюзена
  26. 13. Стабильность и дрейф показаний ТС
  27. 14. Международные стандарты ТС

Виды термометров сопротивления, способы классификации

В метрологии существуют следующие системы разделения термометров сопротивления: согласно технологии, по которой они производятся, и согласно присвоенной им классности. Классы точности (допускные) устанавливаются ГОСТ 6651-2009: AA, A, B, C для цельных агрегатов; классы W, F для термочувствительных комплектующих пленочного и проволочного типов.

Класс допуска демонстрирует допустимый диапазон погрешностей температуры, отображаемой датчиком.

Материалам изготовления термометров сопротивления обычно выбираются на основе требуемого температурного диапазона, необходимой чувствительности, химической и магнитной инертности.

Модификация Класс допуска Рабочий
диапазон
измеряемых
температур °С
Номинальное
значение
температуры
применения,°С
Время термической реакции, сек Условное
давление
измеряемой среды, МПа
Измеряемая
среда
1 2 3 4 5 6 7
ТСТМ-01
ТСТП-01
А
В
С
от-50 до 120
от-50 до 155
от-50 до 180
100
120
120
30 10 Жидкая и газообразная среда
ТСТМ-02
ТСТП-02
ТСТМ-03
ТСТП-03
ТСТМ-04
ТСТП-04
С от-50 до 150 100 8 0,4 Малогабаритные
подшипники и газообразные среды
ТСТМ-05
ТСТП-05
ТСТМ-06
ТСТП-06
С от-50 до 150 100 8 0,4 Малогабаритные подшипники, твердые тела, а также газообразная  среда для ТСТМ-05
ТСТМ-07
ТСТП-07
А
В
С
от-50 до 120
от-50 до 150
от-50 до 180
100
120
120
30 Жидкая и газообразная среда
ТСТМ-08
ТСТП-08
С
от-50 до 150 120 10 0,4 Твердые тела и обмотки  эл. машин
ТСТМ-09
ТСТП-09
С от-50 до 150 120 8 0,4 Поверхности твердых
тел
ТСТМ-10
ТСТП-10
С от-50 до 150 100 30 0,4 Газообразная среда и сыпучие материалы
ТСТМ-11
ТСТП-11
С от 0  до  50 30 1 0,4 Морская вода
ТСТМ-12 ТСТП-12
ТСТМ-13
ТСТП-13
ТСТМ-14 ТСТП-14
ТСТМ-15 ТСТП-15
А
В
С
от-50 до 120
от-50 до 140
от-50 до 120
от-50 до 150
от-50 до 180
100
120
120
30 10 Жидкая и газообразная среда
ТСТМ-16
ТСТП-16
С от-50 до 180 120 8 10 Жидкая и газообразная  среда
ТСТП-17 С от -50 до 150 120 8 Твердые тела и обмотки  эл. машин
ТСТМ-24 С от -50 до 150 120 30 10 Жидкая и газообразная  среда
ТСТМ-25 С от -50 до 150 120 30 10 Жидкая и газообразная  среда
ТСТМ-26 С от -50 до 150 120 30 10 Жидкая и газообразная  среда

Термометрия относится к наиболее простым и эффективным методам измерений. Она основана на том, что физические свойства материала меняются в зависимости от температуры. В частности, измеряя сопротивление металла, сплава или полупроводникового элемента, можно определить его температуру с высокой степенью точности.

Виды термодатчиков

Наиболее распространенными считаются следующие типы термометров сопротивления (далее ТС):

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС. Конструкция термистора

Обозначения:

  • А – Выводы измерителя.
  • В – Стеклянная пробка, закрывающая защитную гильзу.
  • С – Защитная гильза, наполненная гелием.
  • D – Электроизоляционная пленка, покрывающая внутреннюю часть гильзы.
  • E – Полупроводниковый чувствительный элемент (далее ЧЭ), в приведенном примере это германий, легированный сурьмой.
  1. Металлические датчики. У таких измерителей в качестве ЧЭ выступает проволочный или пленочный резистор, помещенный в керамический или металлический корпус. Металл, используемый для изготовления чувствительного элемента, должен быть технологичен и устойчив к окислению, а также обладать достаточным температурным коэффициентом. Таким критериям практически идеально отвечает платина. Там, где не столь высокие требования к измерениям, может использоваться никель или медь. В качестве примера можно привести термодатчики: PT1000, PT500, ТСП 100 П, ТСП pt100, ТСП 50П, ТСМ 296, ТСМ 045, ТС 125, Jumbo, ДТС Овен и т.д.

Чтобы не возникало вопросов, что такое ТСМ, приведем расшифровку этой и других аббревиатур:

  • ТСМ это термометр сопротивления (ТС), в чувствительном элементе (ЧЭ) которого используется медная проволока (М).
  • ТСП, в применяется платиновый (проволока из платины) ЧЭ.
  • КТС б – обозначение комплекта из нескольких платиновых ТС., позволяющих провести многозонные измерения, как правило, монтаж таких устройств производится на вход и выход системы отопления, чтобы установить разность температур.
  • ТПТ – технический (Т) платиновый термометр (ПТ).
  • КТПТР – комплект из ТПТ приборов, буква «Р» в конце указывает, что может производиться не только измерение разницы температур между различными датчиками.
  • ТСПН – «Н» в конце ТСП, обозначает, что датчик низкотемпературный.
  • НСХ – под данным сокращением подразумевается «номинальная статическая характеристика», соответствующая стандартной функции «температура-сопротивление». Достаточно посмотреть таблицу НСХ для pt100 или любого другого датчика (например, pt1000, rtd, ntc и т.д.), чтобы иметь представление о его характеристиках.
  • ЭТС – эталонные приборы, служащие для калибровки датчиков.

Изменение сопротивления в зависимости от температуры для широко используемых материалов первичных преобразователей

Схема термопары, ее конструкция, а также принцип работы существенно отличается от термометра сопротивления, расскажем об этом простыми словами. У устройства pt100, а также других датчиков, принцип действия основан на сопоставимости между изменением температуры металла и его сопротивлением.

Принцип термопары построен на различных свойствах двух металлов собранных в единую биметаллическую конструкцию. Устройство, подключение, назначение термопары, а также описание погрешности этих приборов будет рассмотрено в отдельной статье.

Сейчас достаточно понимать, что термопара и ТСП, например pt100, это совершенно разные приборы, отличающиеся принципом работы.

Учитывая распространенность металлических датчиков, имеет смысл привести краткое описание этих устройств, чтобы наглядно показать сравнительные характеристики различных видов, особенности, а также описать сферу применения.

В соответствии с нормами ГОСТ 6651 2009 и МЭК 60751, у рабочих приборов данного типа значение температурного коэффициента должно быть 0,00385°С-1, эталонных – 0,03925°С-1. Диапазон измеряемой температуры: от-196,0°С до 600,0°С. К несомненным достоинствам следует отнести высокий коэффициент точности, близкую к линей характеристику «Температура-сопротивление», стабильные параметры.

Основная область применения – контроль температуры различных технологических процессов. Например, такой прибор может быть установлен в трубопроводе, в котором плотность рабочей среды сильно зависит от температуры. В этом случае показания вихревой расходометра корректируются информацией о температуре рабочей среды.

Датчик термопреобразователь ТСП 5071 производства Элемер

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Температурный коэффициент (далее ТК) у данного типа измерительных устройств самый высокий – 0,00617°С-1. Диапазон измеряемых температур также существенно уже, чем у платиновых ЧЭ (от -60,0°С до 180,0°С). Основное достоинство данных приборов – высокий уровень выходного сигнала. В процессе эксплуатации следует учитывать особенность, связанную с приближением температуры нагрева к точке Кюри (352,0°С), вызывающую существенное изменение параметров ввиду непредсказуемого гистерезиса.

Данные устройства практически не используются, поскольку в большинстве случаев их можно заменить приборами с медными чувствительными элементами, которые существенно дешевле и технологичнее (проще в производстве).

ТК медных измерительных приборов – 0,00428°С-1, диапазон измеряемых температур немного уже, чем у никелевых аналогов (от -50,0°С до 150°С). К несомненным преимуществам медных измерителей следует отнести их относительно невысокую стоимость и наиболее близкую к линейной характеристику «температура-сопротивление».

Внешний вид термопреобразователя ТСМ 1088 1

Но, тем не менее, медные датчики рано списывать, есть немало примеров удачных реализаций, например, ТХА Метран 2700, который предназначен как для различных видов промышленности, но также удачно используется в ЖКХ.

Учитывая, что платиновые терморезисторы наиболее востребованы, рассмотрим варианты их конструктивного исполнения.

Наиболее распространение получило исполнение ЧЭ в ПТС, называемое «свободной от напряжения спиралью», у зарубежных изготовителей оно проходит под термином «Strain free». Упрощенный вариант такой конструкции представлен ниже.

Конструктивное исполнение «Strain free»

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Обозначения:

  • А – Выводы термоэлектрического элемента.
  • В – Защитный корпус.
  • С – Спираль из платиновой проволоки.
  • D – Мелкодисперсный наполнитель.
  • E – Глазурь, герметизирующая ЧЭ.

Как видно из рисунка, четыре спирали из платиновой проволоки, размещают в специальных каналах, которые потом заполняются мелкодисперсным наполнителем. В роли последнего выступает очищенный от примесей оксид алюминия (Al2O3). Наполнитель обеспечивает изоляцию между витками проволоки, а также играет роль амортизатора при вибрациях или когда происходит ее расширение, вследствие нагрева. Для герметизации отверстий в защитном корпусе применяется специальная глазурь.

На практике встречается много вариаций типового исполнения, различия могут быть в дизайне, герметизирующем материале и размерах основных компонентов.

Исполнение Hollow Annulus.

Данный вид конструкции относительно новый, она разрабатывалась для использования в атомной индустрии, а также на объектах особой важности. В других сферах датчики данного типа практически не применяются, основная причина этого высокая стоимость изделий. Отличительные особенности высокая надежность и стабильные характеристики. Приведем пример такой конструкции.

Пример исполнения «Hollow Annulus»

Виды термодатчиков

  1. Полупроводниковые датчики. Отличительные особенности этих приборов заключается в высокой точности и стабильной чувствительности, а также в возможности измерения быстротечных процессов. Благодаря низкому измерительному току имеется возможность работы со сверхнизкими температурами (до -270°С). Пример конструкции полупроводникового ТС.
    Конструкция термистора

Термистор: принцип работы

Работа термометров основана на том, что некоторые металлы и полупроводники меняют свое электрическое сопротивление при изменении температуры окружающей среды. При этом у металлов при увеличении температуры сопротивление возрастает, их называют позисторами. У полупроводников оно падает, поэтому их название – термисторы. Измерение проводимости чувствительного элемента и является принципом действия. При этом различные материалы обладают разным температурным коэффициентом. Это значит, что одни реагируют на изменения больше, другие меньше. Этот параметр влияет на точность прибора. Всего существует несколько классов точности измерителей:

  • АА, допуск точности – 0,1 градуса;
  • A – 0,15;
  • B – 0,3;
  • C – 0,6.

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Самый точный – АА. Но он и самый дорогой, так как содержит платину. Немаловажную роль при измерении имеет соединение чувствительного элемента с измерителем. Обычно используется мостовая схема. При подключении питания ток, идущий от отрицательного полюса батареи, попадает на узловую точку А. Далее он разделяется на 2 равные части, поскольку сопротивление резисторов R1 и R2 одинаково. Из точек B и С через резисторы R3 и R4 он попадает в узел D и затем на плюс аккумулятора.

Если сопротивление всех резисторов одинаковое, то через резистор R5 ток не проходит. Это можно доказать законами Киргофа. Заменим один из резисторов, например, R3, на чувствительный элемент RTD. При комнатной температуре его сопротивление идентично другим резисторам. При изменении температуры оно меняется, и мост выходит из равновесия.

В этом случае через R5 начинает проходить ток. Если мы поменяем его на вольтметр, тогда по его показаниям можно судить, насколько изменилось сопротивление RTD. По этому изменению можно определить значение температуры. Данная схема широко применяется, поскольку она проста в реализации и обеспечивает хорошую точность. Компоненты моста скрыты в одном корпусе, а наружу выходит только чувствительный элемент RTD.

Быстродействие первичного преобразователя — это время, которое требуется, чтобы сигнал на выходе первичного преобразователя изменился на определенный процент при ступенчатом изменении температуры при определенном наборе условий. Заметим, что существуют разные стандарты на испытания с целью определения быстродействия, которые приводят к

результатам, варьирующимся в широких пределах. Сравнивать быстродействие первичных преобразователей можно только в том случае, если испытания первичных преобразователей проводятся по одному стандарту при одинаковых условиях. Но любые изменения в таких условиях, например, плотность рабочей среды, температура или расход, дадут другие результаты. Например, быстродействие будет намного меньшим в газе, чем в быстро текущей жидкости.

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Быстродействие обычно указывают в секундах в виде значения «t», а рядом указывают уровень сигнала в процентах, при котором это время регистрируется. Например, t(0,5) означает быстродействие для уровня ступенчатого изменения 50%, а t(0,9) означает быстродействие для уровня ступенчатого изменения 90%. См. рисунок 8a.

Рисунок 8a — Типичное быстродействие первичного преобразователя

Факторы, которые влияют на быстродействие, включают в себя теплопроводность материала заполнения между внутренней стенкой защитной гильзы и оболочкой первичного преобразователя, величину зазора между концом первичного преобразователя и дном защитной гильзы, ширину конца первичного преобразователя, толщину гильзы и ее положение в потоке.

Согласно рисунку 8b в идеале размеры «x» и» y» должны стремиться к нулю, а размеры «B» и «t» должны быть настолько малыми, насколько это позволяет конструкция защитной гильзы, рассчитанной на применение в данном технологическом процессе. Применение подпружиненного первичного преобразователя помогает свести к минимуму расстояние «x». Для получения максимального быстродействия необходимо правильно определить глубину ввода защитной гильзы в линию технологического процесса.

Рисунок 8b — Факторы, влияющие на быстродействие

Большинство промышленных сфер требует измерения множества параметров на производстве. Чем сложнее технологические процессы, тем точнее должны быть показания. Один из самых требовательных к точности параметров – температура. Для ее точных замеров используют специальный прибор – терморезистор.

Пример терморезисторов

Простой принцип работы позволяет создавать термопреобразователи сопротивления (научное название устройства) различных габаритов и форм. В зависимости от области применения и материала, датчики могут иметь различную форму и соответствующий тип: стержневой, трубчатый, дисковой или бусинковый. Особых ограничений нет, поэтому на каждой отрасли существуют свои стандарты датчиков.

Принцип действия

Терморезисторы – это датчики, работа которых зависит от двух показателей: температуры и сопротивления. Второй параметр меняется в зависимости от значений первого, при достижении необходимой отметки происходит срабатывание. Существует четыре разновидности терморезисторов:

  • низкотемпературные – для работы при значениях менее 170 К;
  • для средних температур – от 170 до 510 К;
  • для высоких – работают в диапазоне от 510 до 900 К;
  • особый класс – до 1300 К.

Обратите внимание! Для обозначения температуры в рабочем диапазоне терморезистора используют Кельвин, а не градус Цельсия. Это связано с уравнением Стейнхарта-Харта, где в расчетах по формуле учитываются абсолютная температура и сопротивление.

Пример и изображение терморезистора в схеме

Наиболее точные терморезисторы могут использоваться в качестве эталонов – точность реагирования у них доходит до долей градуса. Помимо температурного режима, приборы отличаются по способу нагрева.

Термометр
сопротивления – это средство измерения
температуры, действие которого основано
на использовании зависимости электрического
сопротивления чувствительного элемента
от температуры.

Термометр
сопротивления состоит из термопреобразователя
сопротивления, вторичного прибора
(уравновешенного, неуравновешенного
моста или логометра), соединительной
линии, прокладываемой изолированными
проводами или кабелями с медными жилами.

Измерение
температуры по электрическому
сопротивлению
металлов основывается на зависимости
их сопротивления от
температуры. Для изготовления проволочных
термопреобразователей
применяют медь, платину, никель, железо.
Лучшим
материалом, несмотря на дороговизну,
является платина.
Она инертна и длительное время сохраняет
свои свойства
в широком диапазоне
температур от —260 до 1100°С.

Недостатком
меди является
невысокое удельное сопротивление и
интенсивное
окисление ее в воздухе при температурах
{amp}gt;200°С.

Никель
устойчив против окисления на воздухе
до 400°С, однако применяется для измерения
температур лишь до  180°С из-за
значительной нелинейности характеристики
при более высоких температурах.

Термопреобразователи
изготавливаются из металла одинаковой
чистоты, что проверяется измерением
соотношения R0
и R100
(сопротивлений при температуре 0 и 100 °С
соответственно). При поверке
термопреобразователей сопротивлений
достаточно измерить эти два сопротивления,
чтобы быть уверенным
в правильности их градуировки (номинальной
статической
характеристики)
на всем рабочем диапазоне температур.

Определение
температуры по сопротивлению производится
с помощью градуировочных таблиц
(приложение 5).

Поверка
термопреобразователей сопротивления,
находящихся в эксплуатации, производится
в соответствии с ГОСТ 8.461-82 (СТ СЭВ
1058-78). Порядок поверки следующий:

  • внешний
    осмотр, выявление видимых повреждений
    защитной арматуры и чувствительного
    элемента, удаленного из защитной
    арматуры;

  • измерение
    сопротивления изоляции при помощи
    мегометра на 500 В;

  • поверка
    отношения
    путем сравнения показаний поверяемого
    термопреобразователя с контрольным.

  1. Требования, предъявляемые к материалам термометров сопротивления.

  1. Стабильность
    статической хар-ки

  2. Чистота
    металла при 0 °С
    и при 100°С

  3. Высокий
    температурный коэффициент

  4. Химическая
    инертность

  5. Большое
    удельное сопротивление

  1. Полупроводниковые термометры сопротивления (терморезисторы).

Терморези́стор — полупроводниковый
прибор, электрическое
сопротивление которого
изменяется в зависимости от
еготемпературы[1].

ЧИТАТЬ ДАЛЕЕ:  Как сделать своими руками 👨 домик для кошки из фанеры и газетных трубочек — 77 фото, инструкции, чертежи и размеры

Терморезистор
был изобретён Самюэлем Рубеном (Samuel
Ruben) в 1930 году[2].

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Терморезисторы
изготавливаются из материалов с
высоким температурным
коэффициентом сопротивления (ТКС),
который обычно на порядки выше, чем
ТКС металлов и
металлических сплавов.

Резистивный
элемент терморезистора изготавливают
методом порошковой
металлургии из оксидов, галогенидов, халькогенидовнекоторых
металлов, в различном конструктивном
исполнении, например в виде стержней,
трубок, дисков, шайб, бусинок, тонких
пластинок, и размерами от 1—10 микрометров до
нескольких сантиметров.

Конструкция
и разновидности терморезисторов

По
типу зависимости сопротивления от
температуры различают терморезисторы
с отрицательным (термисторы или
NTC-термисторы, от слов «Negative temperature
coefficient») и положительным (позисторы или
PTC-термисторы, от слов «Positive temperature
coefficient»)температурным
коэффициентом сопротивления (или
ТКС). Для позисторов — с ростом
температуры растёт их сопротивление;
для термисторов — увеличении
температуры приводит к падению их
сопротивления.

Терморезисторы
с ТКС (термисторы) изготовляют из смеси
поликристаллических оксидов переходных
металлов (например, MnO, СoOx, NiO и CuO),
полупроводников типа AIII BV,
стеклообразных, легированных полупроводников
(Ge и Si),
и других материалов. Представляют
интерес терморезисторы изготовленные
из твёрдых растворов на основе BaTiO3,
имеющие положительный ТКС.

Условно
терморезисторы классифицируют как
низкотемпературные (предназначенные
для работы при температуpax ниже 170 К),
среднетемпературные (от 170 до 510 К) и
высокотемпературные (выше 570 К). Выпускаются
терморезисторы, предназначенные для
работы при температурах от 900 до 1300 К.

Отличия от термопары

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Несмотря на схожесть термометров сопротивления и термопар, у них разные принципы действия. В термопарах используются 2 проволоки из разных металлов, соединенные между собой. При изменении температуры в месте контакта образуется разность потенциалов и возникает термо-ЭДС (электродвижущая сила). Далее она фиксируется вольтметром и переводится в значение температуры.

Термопреобразователи сопротивления. Устройство, характеристики, виды и типы, схемы термопреобразователей сопротивления ТСП, ТСМ, ТСПУ, ТСМУ.

В основе работы термопреобразователей сопротивления (ТС) лежит тот принцип, что электрическое сопротивление металла возрастает при увеличении температуры явление, известное как «термическое сопротивление». Таким образом, измерение температуры можно осуществить, измеряя сопротивление элемента ТС. Датчики ТС выполняются из резистивного материала с прикрепленными к нему выводами и обычно помещаются в защитную оболочку.

В качестве резистивного материала может использоваться платина, медь или никель, на сегодняшний день чаще всего используется платина, благодаря высокой точности, превосходной повторяемости и исключительной линейности таких первичных преобразователей в широком диапазоне, а также благодаря тому, что они демонстрируют большое изменение сопротивления на один градус изменения температуры. См. рисунок 1.

Рисунок 1 — Изменение сопротивления в зависимости от температуры для широко используемых материалов первичных преобразователей

Два наиболее широко распространенных вида термопреобразователей сопротивления, это проволочные и тонкопленочные. Проволочные ТС изготавливаются либо путем намотки резистивной проволоки на керамический сердечник, либо в виде спирально навитой проволоки, заключенной в керамическую оболочку — поэтому они и получили название «проволочные».

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Медь и никель, как правило, используются в тех промышленных системах, где требования менее жесткие, ввиду их ограниченной точности и линейности, а также сравнительно узких диапазонов температур.

Никелевые элементы имеют ограниченный диапазон температур, потому что изменение сопротивления на градус изменения температуры становится сильно нелинейным при температуре выше 300°C. Использование никелевых ТС с течением лет сократилось из-за ограничений их рабочих характеристик, а также потому, что стоимость платиновых ТС в настоящее время не выше.

Сопротивление меди имеет очень линейную зависимость от температуры, но поскольку медь окисляется при умеренных температурах, ее не следует использовать при температурах выше 150 °C. Медные ТС широко используются при измерении температуры обмоток электродвигателей, генераторов и турбин. Медные ТС с сопротивлением 10 Ом были очень популярны в течение многих лет, но сейчас они уступают место 100-омным и даже 1000-омным моделям, дающим большее разрешение и тем самым обеспечивающим более точное измерение.

Популярность платиновых ТС растет для решения таких задач. Ввиду того факта, что первичный преобразователь и невозможно заменить, не разбирая электродвигатель, многие поставщики и пользователи отдают предпочтение ТС с двумя чувствительными элементами, а некоторые используют тонкопленочные ТС из-за их большей устойчивости к вибрации и, следовательно, более длительного срока службы.

Платиновые термопреобразователи сопротивления (ТСП) могут иметь следующие сопротивления при 0 °С: 1, 5, 10, 50, 100 и 500 Ом, и поэтому имеют следующее обозначение номинальных статических характеристик 1П, 5П, 10П, 50П, 100П и 500П. ТСП используются для измерения температуры в интервале (-260… 1100) °С и являются наиболее распространенным типом термопреобразователей сопротивления.

Кроме того, при использовании высокоомных ТСП влияние изменения сопротивления внешней линии сказывается меньше, чем при использовании низкоомных. Недостатком платиновых ТС является нелинейность статической характеристики, особенно в области высоких и отрицательных температур, возможность загрязнения платины при высоких температурах, подверженность воздействию восстановительных и агрессивных газов. В интервале температур (0…600) °С зависимость сопротивления от температуры описывается нелинейным выражением

Rt = R0(1 At Bt2)

Обычно в таблицах задаются значения Wt = Rt / R0 в зависимости от температуры. В этом случае номинальные статические характеристики преобразования рассчитываются по (2) и даны в табл. 2. предыдущей статьи.

Для изготовления платиновых термопреобразователей сопротивления используется проволока диаметром от 0,05 до 0,1 мм (для использования в температурном интервале до 750 °С) и диаметром (0,2…0,5) мм для измерения температур до 1100 °С. Типовой конструкцией чувствительного элемента является конструкция, представленная на рис. 2.

1 — платиновые спирали; 2 — керамический каркас; 3 — изоляционный порошок;  4— выводы; 5 — глазурь; 6 — металлическая оболочка

Чувствительный элемент состоит из соединенных последовательно двух платиновых спиралей 1, расположенных в каналах керамического каркаса 2. Каналы каркаса со спиралями заполняются порошком 3 (обычно это оксид магния), который служит изолятором и улучшает тепловой контакт проволоки с каркасом. К концам спиралей припаяны короткие выводы 4 из платиновой или иридиевой проволоки, к которым затем припаиваются изолированные выводные проводники.

Торцы керамического каркаса герметизируются специальной глазурью 5. Каркас помещается в тонкостенную металлическую оболочку 6, которая также заполняется порошком и закрывается пробкой, через которую пропущены выводы. Каркас может иметь четыре канала для размещения двух спиралей (двойные ТС). Такая конструкция обеспечивает хорошую герметичность чувствительного элемента, незначительное механическое напряжение платиновой проволоки, достаточную прочность и вибростойкость.

Медные термопреобразователи сопротивления (ТСМ) применяются для длительного измерения температуры в интервале от -200 до 200 °С. К достоинствам меди как материала для чувствительных элементов следует отнести дешевизну, возможность получения в чистом виде, хорошую технологичность, линейность зависимости сопротивления Rt от температуры t. Статическая характеристика преобразования у ТСМ описывается уравнением

Rt = R0(1 α * t), где α — температурный коэффициент, равный

0,00428 °С-1, R0 — сопротивление ТСМ при 0 °С.

Линейность статической характеристики является достоинством меди, а ее недостатком — интенсивная окисляемость, что ограничивает диапазон применения ТСМ температурой 200 °С и требует покрытия изоляцией проволоки чувствительного элемента. Проволока может покрываться либо эмалью, либо кремнийорганической изоляцией.

а — с каркасной намоткой:  1 — намотка; 2 — каркас; 3 — слой лака; 4 — защитная оболочка; 5 — выводы; б — с бескаркасной намоткой: 1 — намотка; 2 — фторопластовая оболочка; 3 — защитная оболочка; 4 — изолирующий порошок; 5 — выводы

Намотка должна быть безындуктивной, т.е. индуктивное сопротивление чувствительного элемента (ЧЭ) термопреобразователя сопротивления должно быть минимальным. Это связано с тем, что ЧЭ содержит большое число витков медного провода и при обычной намотке будет иметь значительную индуктивность. Поскольку вторичные приборы для ТС (автоматические мосты) имеют измерительные схемы, питаемые электрическим переменным током, индуктивное сопротивление одного из плеч (в данном случае ЧЭ) будет влиять на режим уравновешивания.

Для обеспечения безындуктивности обычно выполняется бифилярная намотка — намотка вдвое сложенным проводом. Поверхность намотки покрывается слоем лака. К концам проволоки припаиваются медные выводы диаметром 1… 1,5 мм. ЧЭ помещается в металлическую защитную оболочку, засыпанную изолирующим порошком и герметизированную.

Чувствительные элементы могут быть бескаркасными (рис. 3, б). Они изготавливаются из медной проволоки диаметром 0,08 мм безындуктивной намоткой. Отдельные слои скреплены лаком, а затем весь ЧЭ обернут фторопластовой пленкой. ЧЭ помещается в тонкостенную металлическую оболочку, которая засыпается изолирующим порошком и герметизируется.

Недостатком меди, как материала для термопреобразователя сопротивления, является также малое удельное сопротивление, так как для изготовления ЧЭ при этом требуется много проволоки, что увеличивает размеры ЧЭ и ухудшает динамические свойства ТС.

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Rt = R0 (1 α * t)

причем коэффициент α  = 0,00428 (1/°С) одинаков для всех ТСМ (по стандартам МЭК он может быть равным 0,00426 1/°С). Различие НСХ только в значении R0. Медные ТС обычно выпускаются с классами допуска В и С. Предельные значения отклонений приведены в табл. 1. предыдущей статьи

В общем виде чувствительность для термопреобразователя сопротивления определяется выражением

S = ΔRt / At,          (5)

при Δt стремящемся к нулю

S = dRt / dt,        (6)

где d — символ производной.

ΔR = Δt * S.               (7)

Арматура ТС бывает двух исполнений: с головкой и без нее. В головке ТС имеются контакты, к которым подсоединяются выводные проводники от ЧЭ и сальниковый ввод для линии связи со вторичным устройством. Внутреннее устройство ТС с головкой представлено на рис. 4.

1. Общие характеристики ТС

Промышленные первичные преобразователи редко, если вообще когда-либо, используются таким образом, что они ничем не защищены от воздействия окружающей среды. Они заключаются в металлические трубки или оболочки, которые завариваются наглухо на одном

конце, и имеют провода выводов, которые выходят из второго, загерметизированного конца. См. рисунок 1a и рисунок 1b

Рисунок 1а — Лазерная сварка оболочки первичного преобразователя

Рисунок 1b — Герметизация задней стороны корпуса первичного преобразователя

1.1 Чувствительный элемент

Чувствительный элемент находится на конце первичного преобразователя температуры, на который воздействует температура технологического процесса. Чувствительный элемент реагирует на температуру, генерируя поддающееся измерению изменение сопротивления или сигнал напряжения, который возрастает с увеличением температуры.

Измерительные преобразователи могут иметь один или два элемента в одной оболочке первичного преобразователя. Сдвоенные элементы обеспечивают резервированное измерение, что может оказаться полезным для режима горячего резервирования, контроля дрейфа показаний с помощью методики сравнения, или для формирования входных сигналов на два независимых контроллера или две системы (систему управления или систему защиты). См. рисунок 1.1а.

Рисунок 1.1а — ТС с 2-мя чувствительными элементами

СОВЕТ: В некоторых из этих систем корпус может быть выполнен в расчете на использование двух независимо установленных одиночных первичных преобразователей, а не двух чувствительных элементов в одной оболочке.

1.2 Оболочка первичных преобразователей

Оболочка первичного преобразователя выполняется из металла, обычно из нержавеющей стали (в некоторых высокотемпературных системах используются сплавы Hastelloy или Inconel), и как правило содержит 2, 4, 6 или 8 проводников, соединяющих чувствительный элемент(ы) с проводами выводов. Одиночная термопара требует двух выводов, а термопаре с 2 ЧЭ требуется четыре вывода.

Одиночный ТС может иметь два, три или четыре вывода, а сдвоенный ТС может иметь четыре, шесть или восемь выводов. Оболочка первичного преобразователя защищает элементы и проводники от влаги и коррозионных и/или абразивных условий технологического процесса и помогает экранировать сигнал от электрических шумов.

Рисунок 1.2a — Общие характеристики первичного преобразователя температуры

Диаметры оболочки первичного преобразователя могут быть разными; чаще всего встречаются размеры 6 мм (1/4 дюйма) и 3 мм (1/8 дюйма). Первичные преобразователи меньшего диаметра имеют большее быстродействие, потому что имеют меньшую массу и меньше изолирующего материала. Первичные преобразователи с меньшими диаметрами также обеспечивают более точное измерение благодаря меньшей погрешности, обусловленной теплопроводностью оболочки.

Однако во многих промышленных системах используются защитные гильзы для установки, добавляющие значительную массу к общей массе узла, чем несколько

уменьшают положительный эффект обоих этих факторов. Защитная гильза устанавливается в технологическую линию с герметичным уплотнением и имеет внутреннюю полость, в которую помещается первичный преобразователь. Это позволяет легко извлекать первичный преобразователь для калибровки или замены.

1.3 Выводы проводников

Выводы проводников обычно представляют собой витые из нескольких жил, изолированные провода, которые прикрепляются к проводникам, проходящим через оболочку первичного преобразователя и соединяющих элемент с соединительными проводами. Эти выводы проводников имеют уплотнения на конце оболочки и используются для соединения первичного преобразователя с клеммной колодкой, измерительным преобразователем или другой точкой подключения. Длина этих выводов может быть разной у разных поставщиков и определяется требованиями пользователя. См. рисунок 1b в п. 1.

1.3.1 Компенсация выводов проводников

Поскольку выводы проводников являются частью цепи ТС, их сопротивление необходимо компенсировать, чтобы добиться наилучшей точности. Это становится особенно важным там, где используются длинные провода первичного преобразователя и/или выводов. Существуют три широко распространенных конфигурации выводов проводников.

В двухпроводной конфигурации не может быть компенсации сопротивления проводников, так как проводники подключаются последовательно с элементом и воспринимаются измерительным преобразователем как часть сопротивления первичного преобразователя, вызывая снижение точности, неизбежно присущее таким схемам.

Существует мало систем, для которых двухпроводные первичные преобразователи являются хорошим выбором. В трехпроводной конфигурации компенсация осуществляется с помощью третьего провода в предположении, что он имеет такое же сопротивление, что и два других провода, и одна и та же компенсация применяется ко всем трем проводам.

На рисунке 1.3.1b показано выражение для этой компенсации: Rизмерения = RL1 Rэлемента — RL3. Однако в реальности всегда имеется некоторая разница между L1 и L3 из-за отклонений в процессе изготовления проводников, неравенства длин, незатянутых соединений, деформационного упрочнения вследствие изгиба и термической коррозии.

Рисунок 1.3.1b — Двух-, трех-, четырех- проводные ТС и выражения для компенсации

Так как сопротивление 100-омного платинового ТС меняется на 0,39 Ома на градус C, на каждый Ом разницы эффективных сопротивлений проводников появляется погрешность до 2,5 °С (1-0,39). Эта погрешность из-за неравенства сопротивлений вероятнее всего будет меняться со временем неожиданно и непредсказуемо из-за увеличения коррозии, изменений температуры и влажности и т.д. См. рисунок 1.3.1c

Рисунок 1.3.1c — Зависимость погрешности от неравенства сопротивлений проводников в случае 3-проводного ТС

Идеальной является четырехпроводная конструкция, потому что сопротивление проводников в этом случае не оказывает влияния на измерение. В ней используется методика измерения, при которой очень маленький постоянный ток порядка 150 микроампер подается на первичный преобразователь по двум выводам, и напряжение, возникающее на первичном преобразователе, измеряется другими двумя выводами с помощью цепи, имеющей высокое полное входное сопротивление и высокое разрешение измерения.

Градуировка

Она выполняется тремя способами.

  • На шкалу наносятся значения температуры, которые соответствуют величине сопротивления датчика. Это более наглядный способ. Нелинейность зависимости можно компенсировать с помощью неравномерной разметки шкалы. Недостаток – погрешность равна цене деления шкалы.
  • Фиксируется действительное значение сопротивления, которое затем по специальным таблицам переводится в температуру. Более трудоемкий способ индикации, но более точный. Если нужного значения нет в таблице, результат измерения интерполируется, получается точное значение температуры. Нелинейность характеристик измерителя не оказывает влияния на результат. Интерполяция – метод нахождения промежуточных значений величины по готовому дискретному набору ее значений. Не представляет большой сложности и выполняется по формулам.
  • Фиксирование с помощью вычислительной техники. Совмещает все достоинства предыдущих способов. Результат выводится на дисплее.

2. Конструкция датчика ТС

При изготовлении высококачественных первичных преобразователей необходимо учитывать множество факторов. Один из способов изготовления проволочного чувствительного элемента предполагает использование проволоки с очень высокой степенью чистоты, которая наматывается на сердечник, коэффициент расширения которого очень близок к коэффициенту расширения проволоки, чтобы свести к минимуму влияние деформации элемента.

При другом способе проволока скручивается в форме спирали, а затем помещается в керамическую оболочку. Никакое связующее вещество, используемое при изготовлении, не должно вносить никаких механических напряжений в конструкцию. Сборку необходимо проводить в чистом помещении, чтобы исключить всякое загрязнение, которое может ухудшить первичный преобразователь и увеличить дрейф показаний в долгосрочной перспективе.

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Материал проводников необходимо выбирать так, чтобы он соответствовал рабочему диапазону первичного преобразователя, и тщательно приваривать провода лазерной сваркой к первичному преобразователю, избегая создания каких-либо термоэлектрических спаев. Все внутренние компоненты должны иметь надлежащую опору и иметь устройства снятия механических напряжений, чтобы исключить создание механических и термических напряжений и повысить стойкость к ударным воздействиям и вибрации.

ЧИТАТЬ ДАЛЕЕ:  Тканевые натяжные потолки Плюсы и минусы фото готовых конструкций

Чем меньшего механического напряжения удается добиться путем надлежащего выбора коэффициентов расширения материала, тем лучше будет повторяемость и стабильность результатов измерения узлом первичного преобразователя. Аналогичные соображения относительно снятия механических напряжений относятся к изготовлению тонкопленочных элементов, в которых тонкая платиновая пленка наносится на керамическую подложку.

Этот процесс также включает в себя отжиг и подстройку сопротивления первичного преобразователя, чтобы получить надлежащее сопротивление при температуре плавления льда, R0. Процесс завершается нанесением непроводящего герметизирующего материала, такого как цемент или стеклянный материал, чтобы загерметизировать первичный преобразователь и сварные швы от возможного загрязнения. См. рисунок 1.

2a и рисунок 1b. После этого законченный чувствительный элемент заключается в оболочку, как описано выше. Такой же процесс изготовления применяется в случае никелевых или медных ТС. Вообще никелевые и медные первичные преобразователи стоят несколько дешевле, так как цена металла намного ниже, чем цена сверхчистой платины. Однако для тонкопленочных платиновых ТС нужно так мало платины, что ценовое преимущество медных или никелевых изделий снижается или вовсе исчезает.

2.1 Проволочные элементы

Проволочные элементы, предполагающие наматывание проводки на сердечник, изготовленные так, как описано выше, широко распространены в виде изделий с сопротивлением от 100 Ом до 1000 Ом, при этом 100-омные элементы наиболее широко используются в промышленности. Они имеют диапазон температур от -200 до 850°C (от -328 до 1562°F), в котором они соответствуют характеристике температурного коэффициента кривой (альфа) 385 (а = 0,00385), а их максимальный диапазон составляет от -240 до 960°C (от -400 до 1760°F). См. рисунок 2.1a

Рисунок 2.1a — Проволочный элемент с проволокой, намотанной на сердечник

2.2 Спиральные первичные преобразователи

Спиральные первичные преобразователи, которые также называют первичными преобразователями с подвешенными спиралями, представляют собой вариант проволочных первичных преобразователей, рассчитанных на применение в суровых условиях, где в то же время требуется высокая точность и быстродействие. Их труднее изготовить, и немногие поставщики предлагают такие первичные преобразователи. См. рисунок 2.2a

Рисунок 2.2a — Конструкция элемента ТС со спирально навитой проволокой

Элемент выполняется из платиновой проволоки высокой степени чистоты, которая скручивается в виде цилиндрической спирали, чтобы свести к минимуму механическое напряжение и обеспечить точные показания в течение длительного времени. Каждая спираль находится в полностью подвешенном состоянии в керамическом изоляторе, имеющем высокую степень чистоты, и окружена наполнителем в виде керамического порошка со связующей добавкой.

Такая конструкция обеспечивает чувствительный элемент без механических напряжений в отличие от конструкции, предполагающей намотку проволоки на сердечник, или тонкопленочной конструкции, в которых всегда имеется некоторое механическое напряжение, обусловленное разностью коэффициентов теплового расширения материалов сердечника или подложки и самого платинового элемента, а также стеклянной оболочки.

Они используются в диапазоне от -200 до 1000°C (от -328 до 1832°F)

2.3 Тонкопленочные элементы

Тонкопленочные элементы изготавливаются путем осаждения тонкой пленки чистой платины на керамическую подложку в виде лабиринтной структуры. См. рисунок 2.3a . Затем первичный преобразователь стабилизируется с помощью процесса отжига при высокой температуре и подстраивается (подрезается), чтобы получить нужное значение R0.

После этого эти компактные первичные преобразователи заключаются в оболочку из стеклянного материала. В месте, где крепятся проводники, стеклянная оболочка делается намного более прочной, чтобы обеспечить механическую защиту и исключить попадание влаги. При их малых размерах и массе такие первичные преобразователи более стойки к вибрации, чем проволочные, и часто являются лучшим выбором для систем с высоким уровнем вибрации.

Ввиду трудностей, связанных с согласованием коэффициентов теплового расширения платинового покрытия и материала подложки, диапазон этих первичных преобразователей несколько меньше, по сравнению с проволочными, и обычно составляет от -200 до 800°C. (от -328 до 1472°F)

Рисунок 2.3a — Конструкция тонкопленочного элемента ТС

Термопреобразователи сопротивления. Устройство, характеристики, виды и типы, схемы термопреобразователей сопротивления ТСП, ТСМ, ТСПУ, ТСМУ.

Rt = R0 (1 α * t)

1 — чувствительный элемент; 2 — защитная арматура; 3 — выводы; 4 — изоляция; 5 — герметик; 6 — головка; 7 — клеммная сборка; 8 — зажимы; 9 — жилы кабеля; 10 — кабель; 11 — гайка

Выводные (от ЧЭ) проводники пропускаются через каналы керамического изолятора, все свободное пространство внутри арматуры засыпается керамическим порошком. В верхней части арматура герметизируется. В головке располагается сборка зажимов, к которой подсоединяются выводные проводники чувствительного элемента и провода внешней линии.

От чувствительного элемента к контактной головке могут подходить два, три или четыре выводных проводника. Это связано с различными схемами подключения ЧЭ к вторичным устройствам (двух-, трех- или четырехпроводные схемы). Часть применяемых схем выводов приведена на рис. 5.

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Схема термопреобразователя сопротивления без головки и крепежных устройств с четырьмя выводами от ТС изображена на рис. 6. У таких ТС выводы от чувствительного элемента после пробки, герметизирующей свободный конец защитной арматуры, выпускаются в виде отдельных изолированных проводов большой протяженности. На рис. 6 изображен пример, когда от чувствительного элемента отходят четыре вывода.

а,6 — четырехпроводная; в, д — двухпроводная; г — трехпроводная (схемы б,д — двойной ТС)

а — внешний вид; б — схема видов

Рис. 7. Структурная схема измерительного преобразователя температуры SITRANS TK-L

Проволочные термопреобразователи сопротивления имеют стабильную НСХ, однако обладают сравнительно большими размерами и достаточно большой тепловой инерцией. Этих недостатков лишены тонкопленочные ТС, которые работают в интервале (-50…300) °С, классов А, В, С и имеют НСХ 50М(П), 100М(П), 500М(П), 1000М(П).

Структурная схема измерительного преобразователя температуры SITRANS TK-L, размещаемого в головке термопреобразователя сопротивления ТС (Pt100) представлена на рис. 7. Последний к преобразователю подключен по четырехпроводной схеме, возможны варианты двухпроводного и трехпроводного подключения. Сигнал от термопреобразователя сопротивления, усиленный в усилителе У, поступает на аналого- цифровой преобразователь АЦП, а затем на микропроцессор МП и цифроаналоговый преобразователь ЦАП.

В микропроцессоре производится усреднение измеряемого сигнала, линеаризация, пересчет в соответствии с заданным диапазоном и пр. По двухпроводной линии передается выходной сигнал 4…20 мА и питание от внешнего источника. Диапазон измерения преобразователя составляет -200…850 °С при погрешности ±0,1 % диапазона измерения.

Комплекты термопреобразователей. Платиновые термопреобразователи сопротивления являются основными средствами измерения температур в системах контроля теплоснабжения, где малые разности температур (3…4) °С должны измеряться с погрешность (1…2) %. Обычно для учета теплоты подбирается комплект из двух платиновых термопреобразователей сопротивления (например, комплект КТПТР), обладающих близкими погрешностями одного знака, это позволяет обеспечить высокую точность измерения разности температур. В табл.

Полупроводниковые термопреобразователи сопротивления обычно называются термисторами и используются для измерения температур в интервале (-100…300) °С. Их достоинства — высокое значение ТКС (на порядок больше, чем у металлов), малая тепловая инерция и высокое номинальное сопротивление. Недостатками являются нелинейность номинальной статической характеристики, невзаимозаменяемость из-за большого разброса номинального сопротивления и ТКС, нестабильность статической характеристики.

Таким образом, термопреобразователи сопротивления могут применяться для измерения температуры только в сочетании с другими средствами измерений. Так, измерительный комплект может состоять из ТС, вторичного прибора (например, РП160-12) и соединительной линии между ними. Погрешность измерения температуры в этом случае определяется погрешностью всех этих средств с учетом возможной методической погрешности.

www.eti.su

Для хороших результатов нужно не только выбрать датчик, но и правильно его подключить. Для этого есть 3 способа, все хорошо подходят для мостовой схемы питания.

Двухпроводная

Используется только для грубых измерений, поскольку на точность влияет сопротивление проводов. Диапазон длины этих проводов задается в паспорте устройства, нарушать его нельзя. Это ограничивает сферу применения такого способа подключения. Не подходит для устройств с классом точности АА и А.

Трехпроводная

В ней, помимо сопротивления чувствительного элемента, отдельно измеряется проводимость одного из монтажных кабелей, что позволяет вычесть эту величину из расчета. Предполагается, что сопротивления проводов равны между собой. При этом ток через сигнальный провод не течет, на него поступает только напряжение с датчика. Соответственно, изменение проводимости чувствительного элемента влияет на напряжение в сигнальном проводе, которое и регистрируется вольтметром.

Четырехпроводная

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Электрическое сопротивление кабелей питания может различаться между собой. Достоинство этой схемы в том, что она позволяет учитывать проводимость сразу 2-х кабелей питания датчика. Принципиально не отличается от трехпроводной. Применяется для очень точных измерений в лабораторных условиях и эталонных установках.

Термопреобразователи сопротивления. Контроль температуры

Существуют различные виды первичных преобразователей, обеспечивающие большое разнообразие способов установки. Каждый из них имеет свои отличительные черты для каждого способа применения и установки.

3.1 Кабельная вставка

Кабельная вставка — это просто оболочка первичного преобразователя с проводниками. Вставки широко используются с запрессовываемыми фитингами и могут быть экономически оправданы в таких условиях, где можно не опасаться высоких давлений или температур.

3.2 Резьбовая конструкция

Приварная, общего назначения — вставка приваривается к резьбовому переходнику, обеспечивая герметизацию относительно рабочей среды технологического процесса. Если позволяют условия, первичный преобразователь можно погрузить прямо в рабочую среду технологического процесса без защитной гильзы, чтобы повысить быстродействие.

Уплотнение ограничивается резьбовым соединением и поэтому имеет меньшие номинальные значения давления, чем те, что могут быть достигнуты при использовании приварных или фланцевых защитных гильз. (Подробнее см. главу о защитных гильзах). Приварные конструкции общего назначения не рекомендуется использовать с защитными гильзами, потому что конец первичного преобразователя не будет касаться дна гильзы, что будет создавать термоизоляцию. См. рисунок 1.2a.

Рисунок 1.2a — Переходник приварной конструкции общего назначения

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Подпружиненная — пружина, находящаяся в резьбовом переходнике, позволяет вставке перемещаться, обеспечивая контакт с дном защитной гильзы. Подпружиненная конструкция обеспечивает постоянный контакт с дном защитной гильзы, что повышает стойкость к вибрации и значительно увеличивает быстродействие системы измерения. См. рисунок 1.2b

Рисунок 1.2b — Подпружиненная резьбовая конструкция

Байонетная подпружиненная — байонетная подпружиненная конструкция подобна подпружиненной, но позволяет вынимать вставку, не снимая резьбовой переходник с защитной гильзы. Это уменьшает перекручивание выводов и вероятность повреждения, которая имеет место при снятии резьбовой конструкции. См. рисунок 1.2c.

Рисунок 1.2c — Байонетный подпружиненный узел первичного преобразователя

3.3 DIN-конструкция

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

3.3.1- Гибкие выводы — Диск DIN крепится к торцу капсулы. Конструкция с гибкими выводами чаще всего используется в случае измерительного преобразователя, монтируемого в головке. Подпружинивание обеспечивается монтажными винтами измерительного преобразователя.

3.3.2- Клеммная колодка — Диск DIN с клеммной колодкой крепится к торцу кабельной вставки. Клеммная колодка чаще всего используется при удаленном монтаже измерительного преобразователя, когда последний находится не в точке измерения, и между первичным преобразователем и измерительным преобразователем прокладываются провода. Подпружинивание обеспечивается монтажными винтами клеммной колодки или измерительного преобразователя.

Рисунок 3.3a — Первичные преобразователи DIN-конструкции — с гибкими выводами — с клеммной колодкой

Rt = R0 (1 α * t)

www.eti.su

Термопреобразователи сопротивления относятся к числу наиболее распространенных преобразователей температуры, используемых в цепях измерения и регулирования. Термопреобразователи сопротивления выпускаются многими отечественными и зарубежными фирмами, такими как «Термико», «Элемер» (Московск. обл.), «Навигатор», «Термоавтоматика» (Москва), «Тепло- прибор» (г. Владимир и г. Челябинск), Луцкий приборостроительный завод (Украина), Siemens, Jumo (Germany), Honeywell, Foxboro, Rosemount (USA), Yokogawa (Япония) и др.

Термометром сопротивления называется комплект для измерения температуры, включающий термопреобразователь, основанный на зависимости электрического сопротивления от температуры, и вторичный прибор, показывающий значение температуры в зависимости от измеряемого сопротивления. Для измерения температуры термопреобразователь сопротивления необходимо погрузить в контролируемую среду и каким-либо прибором измерить его сопротивление.

По известной зависимости между сопротивлением термопреобразователя и температурой можно определить значение температуры. Таким образом, простейший комплект термометра сопротивления (рис. 1, а) состоит из термопреобразователя сопротивления (ТС), вторичного прибора (ВП) для измерения сопротивления и соединительной линии (ЛC) между ними (она может быть двух, трех или четырехпроводной).

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

а — термопреобразователь с вторичным прибором; б — термопреобразователь с нормирующим преобразователем; ТС — термопреобразователь сопротивления; ВП, ВП1, ВП2 — вторичные приборы; ЛС — линии связи; НП — нормирующий преобразователь; БРТ — блок размножения токового сигнала

В качестве вторичного прибора обычно используются аналоговые или цифровые приборы (например, КСМ-2, РП-160, Технограф, РМТ-39/49), реже — логометры (например, Ш-69001). Шкалы вторичных приборов градуируются в градусах Цельсия.

Широко применяются схемы с нормированием выходного сигнала термопреобразователей (рис. 1, б). В этом случае линией связи термопреобразователь сопротивления соединяется с нормирующим преобразователем НП (например, Ш-9321, ИПМ-0196 и т.п.), имеющим унифицированный выходной сигнал (например, 0…5 или 4…20 мА).

Для использования в нескольких измерительных каналах этот сигнал размножается блоком размножения БРТ и затем поступает к нескольким вторичным приборам (ВП-1, ВП-2 и т.п.) или иным потребителям. Очевидно, что в этом случае вторичными приборами должны быть миллиамперметры. Выпускаются преобразователи сопротивления, в головке которых располагается схема нормирования, т.е.

их выходным сигналом является ток 0…5, 4…20 мА или цифровой сигнал (интеллектуальные преобразователи). В таком случае необходимость использования нормирующего преобразователя НП в виде отдельного блока отпадает. Термопреобразователи сопротивления с выходным унифицированным сигналом имеют в своем обозначении букву У (например, ТСПУ, ТСМУ). Характеристики этих преобразователей и с цифровым выходным сигналом (Метран-286) приведены в табл. 1.

Таблица 1

Технические данные термопреобразователей сопротивления

Тип Термопреобразователя сопротивления

Класс до­пуска

Интервал использования, °С

Пределы допускаемых отклонений ± Δ t, °С

ТСМ

А

В

С

-50…120

-200… 200

-200… 200

0,15 0,0015 *|t|

0,25 0,0035 *|t|

0,50 0,0065 *t|

ТСП

А

В

С

-200…650

-200…850

-100…300 и 850…1100

0,15 0,002 *|t|

0,30 0,005 *|t|

0,60 0,008 *|t|

ТСПУ

0…600

0,25; 0,5 % (приведенная)

ТСМУ

-50… 180

0,25; 0,5 % (приведенная)

КТПТР

1

2

0…180 по Δ t

0,05 0,001Δ t 0,10 0,002Δ t

Метран 286 выход 4…20 мА HART протокол

0…500 (с 100П)

0,25 (цифровой сигнал) 0,3 (токовый сигнал)

Для изготовления термопреобразователей сопротивления (ТС) могут использоваться либо чистые металлы, либо полупроводниковые материалы. Электрическое сопротивление чистых металлов увеличивается с ростом температуры (их температурный коэффициент достигает 0,0065 К-1, т.е. сопротивление увеличивается на 0,65% при увеличении температуры на один градус).

Полупроводниковые термопреобразователи сопротивления имеют отрицательный температурный коэффициент (т.е. их сопротивление уменьшается с ростом температуры), доходящий до 0,15 К-1. Полупроводниковые ТС не используются в системах технологического контроля для измерения температуры, так как требуют периодической индивидуальной градуировки.

Термопреобразователи сопротивления из чистых металлов, получившие наибольшее распространение, изготавливают обычно из тонкой проволоки в виде намотки на каркас или спирали внутри каркаса. Такое изделие называется чувствительным элементом термопреобразователя сопротивления. Для предохранения от повреждений чувствительный элемент помещают в защитную арматуру.

Достоинством металлических ТС является высокая точность измерения температуры (при невысоких температурах выше, чем у термоэлектрических преобразователей), а также взаимозаменяемость. Металлы для чувствительных элементов (ЧЭ) должны отвечать ряду требований, основными из которых являются требования стабильности градуировочной характеристики и воспроизводимости (т.е.

По ГОСТ Р50353-92 термопреобразователи сопротивления могут изготавливаться из платины (обозначение ТСП), из меди (обозначение ТСМ) или никеля (обозначение ТСН). Характеристикой ТС является их сопротивление R0 при 0 °С, температурный коэффициент сопротивления (ТКС) и класс.

Наличие в металлах примесей уменьшает температурный коэффициент электросопротивления, поэтому металлы для термопреобразователя сопротивления должны иметь нормированную чистоту. Поскольку ТКС может изменяться с изменением температуры, показателем степени чистоты выбрана величина W100 — отношение сопротивлений ТС при 100 и 0 °С.

Для ТСП W100 = 1,385 или 1,391, для ТСМ W100 = 1,426 или 1,428. Класс термопреобразователя сопротивления определяет допускаемые отклонения и от номинальных значений, что, в свою очередь, определяет допускаемую абсолютную погрешность Δt преобразования ТС. По допускаемым погрешностям ТС подразделяются на три класса — А, В, С, при этом платиновые ТС обычно выпускаются классов А, В, медные — классов В, С.

Популярные производители

Термометр сопротивления – это сложное и дорогое устройство. Поэтому не рекомендуется брать изделия неизвестных производителей, лучше довериться продукции проверенных фирм. Тем более что сбой при измерении может нанести значительный ущерб. Среди достойных моделей от известных производителей можно выделить следующие:

  • ТСП 100 П, ТСП pt100, ТПС 50 П;
ЧИТАТЬ ДАЛЕЕ:  Советы по выбору ламината для квартиры, какой вариант лучше
  • ТСМ 296, ТСМ 045, ТСМ 1088;

О том, как правильно пользоваться термометром сопротивления, смотрите в следующем видео.

4. Удлинители

Первичные преобразователи могут иметь удлинители разной длины для установки в линии с различной толщиной изоляциидля того, чтобы разместить измерительный преобразователь на некотором расстоянии от технологической линии с высокой температурой, которая может негативно влиять на электронные компоненты измерительного преобразователя. Удлинители могут представлять собой сочетания муфт, патрубков и/или соединительных устройств. См. рисунок 4a.

Рисунок 4a — Типичный удлинитель в виде патрубка — муфты

5. Варианты монтажа

Первичные преобразователи температуры могут быть либо погружаемыми в рабочую среду технологического процесса, либо монтируемыми на поверхности. Выбор способа монтажа зависит от применения, условий технологического процесса и ограничений, налагаемых окружающей средой.

5.1 Монтаж погружаемых первичных преобразователей

Как следует из названия, погружаемые первичные преобразователи температуры помещаются в среду технологического процесса; более того, обычно они устанавливаются в защитную гильзу для защиты от условий технологического процесса. См. рисунок 5.1a и рисунок 5.1b. В зависимости от конструкции первичного преобразователя и условий технологического процесса, некоторые первичные преобразователи могут устанавливаться прямо в рабочую среду технологического процесса.

Рисунок 5.1a — Установка датчика температуры в технологический трубопровод

Рисунок 5.1b — Установка беспроводного датчика температуры на технологическом трубопроводе вблизи точки измерения

5.2 Монтаж на поверхности

Монтаж на поверхности — это эффективный и удобный способ установки, который часто используется, когда нецелесообразно или невозможно поместить узел первичного преобразователя в среду технологического процесса. Например, такая ситуация может возникнуть из-за частого использования скребка для очистки труб от материала, откладывающегося на стенках трубопровода, и скребок не может пройти по трубе из-за того, что ему мешают такие защитные гильзы, торчащие внутрь трубы. См. рисунок 5.2a.

Рисунок 5.2 a — Скребок для очистки трубопровода

Однако, измерение на поверхности надежно лишь настолько, насколько точно температура на поверхности трубы или сосуда отражает состояние технологического процесса. Вообще целью является максимизация теплопередачи от поверхности трубы или сосуда на чувствительный элемент. Первичные преобразователи могут устанавливаться с помощью клеящих веществ, винтов, зажимов или сварных швов для того, чтобы обеспечить хороший тепловой контакт. См. рисунок 5.2b.

Теплоизоляция используется для того, чтобы свести к минимуму потери тепловой энергии от поверхности трубы в окружающее пространство, и она должна покрывать первичный преобразователь и проводники на некоторое расстояние, чтобы свести к минимуму всякие потери на теплопроводность проводов. Это помогает гарантировать, что температура первичного преобразователя равна, или близка, насколько это возможно, к фактической температуре поверхности трубы, которая предполагается равной температуре рабочей среды технологического процесса.

Расход рабочей среды технологического процесса и скорость изменения ее температуры оказывают значительное влияние на это допущение. Разницу коэффициентов теплового расширения трубопровода и монтажного узла также необходимо принимать во внимание, чтобы свести к минимуму механическое напряжение первичного преобразователя, которое может ухудшить результаты измерения или даже разрушить первичный преобразователь.

Рисунок 5.2b — Датчик температуры поверхностного монтажа — трубный зажим

6. Факторы, влияющие на эксплуатационные характеристики ТС

6.1 Сопротивление — значения альфа

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Элементы ТС характеризуются их температурным коэффициентом сопротивления (ТКС), который также называют коэффициентом альфа. Для платиновых элементов эти значения регламентирует стандарт IEC 60751-2008. См. рисунок 6.1a.

Альфа — это температурный коэффициент для конкретного материала и состава. Медные и платиновые элементы имеют разные коэффициенты альфа, и у самих платиновых элементов коэффициенты тоже могут быть разными, в зависимости от чистоты платины и состава сплава. Значения альфа определяют взаимозаменяемость первичных преобразователей.

Разные первичные преобразователи с одним и тем же коэффициентом альфа гарантируют, что зависимость сопротивления от температуры останется неизменной в пределах указанной точности. При замене первичного преобразователя пользователь должен позаботиться о том, чтобы новый первичный преобразователь был изготовлен из такого же материала с таким же сопротивлением и коэффициентом альфа, например, Pt100: используется = 0,00385.

Рисунок 6.1а — Температурный коэффициент сопротивления (ТКС) первичного преобразователя Pt100

Альфа = (R100 — R0) ÷ 100 R0 где R0 — сопротивление первичного преобразователя при температуре 0°C, а R100 — сопротивление первичного преобразователя при температуре 100°C.

Платиновые ТС имеют значения альфа в диапазоне от 0,00375 до 0,003927. Наибольшее значение альфа указывает на наивысшую степень чистоты платины, и такая частота предписывается Международной температурной шкалой 1990 г. (ITS-90) для эталонных (лабораторного класса) платиновых термопреобразователей сопротивления.

При практическом применении в промышленности не существует никаких технических преимуществ одного коэффициента альфа перед другим. Платина с коэффициентом 0,00385 наиболее широко используется и является стандартным вариантом, доступным в виде серийных изделий по всему миру. Выпускаются различные виды первичных преобразователей из этого металла, включая проволочные и тонкопленочные элементы с сопротивлениями от 100 до 1000 Ом.

7. Самонагрев

Самонагрев имеет место, когда ток чувствительного элемента от измерительного преобразователя протекает по чувствительному элементу ТС. Нагрев пропорционален !2х R согласно закону Джоуля, который гласит: «мощность возрастает пропорционально квадрату силы тока, протекающего через обмотку и коэффициентом пропорциональности является электрическое сопротивление проводников.

СОВЕТ: Многие старые измерительные преобразователи с аналоговыми цепями имеют существенно более высокий ток возбуждения, который вызывает значительно больший самонагрев первичного преобразователя и связанную с этим погрешность измерения. Чтобы создать высокоточную систему, вдумчивый пользователь перейдет на измерительные преобразователи на основе микропроцессоров.

9. Гистерезис

Гистерезис — это явление, которое приводит к разности выходных сигналов первичного преобразователя, когда они приближаются к одному и тому же значению, но с разных сторон. Например, если выходной сигнал сравнивается в определенной точке после возрастания температуры выше этой точки и последующего возврата в ту же точку, он будет отличаться от выходного сигнала, получаемого, если температура уменьшается, становясь ниже этой точки, а затем возвращается к ней.

В эталонных ТС или ТС лабораторного класса имеется пренебрежимо малый гистерезис, поскольку контакт между платиновым элементом и поддерживающей его средой минимален благодаря конструкции в виде подвешенной спирали. Это первичные преобразователи очень высокой точности и очень дорогие, используемые в качестве калибровочных эталонов, требующие бережного обращения, чтобы не повредить их ударными воздействиями.

Первичные преобразователи промышленного класса имеют погрешность, связанную с гистерезисом, частично благодаря своей прочной конструкции с покрытием, которое фактически связывает платиновый элемент с опорным сердечником или подложкой. Разность коэффициентов теплового расширения различных материалов приводит к погрешности, связанной с дрейфом показаний. В 1982 г.

сотрудник Rosemount Д.Дж. Кертис провел исследование различных конструкций ТС и обнаружил, что проволочные конструкции являются наилучшими, имея стандартное значение гистерезиса 0,008%, а тонкопленочные конструкции имеют большее стандартное значение гистерезиса — 0,08%. См. рисунок 9a. Для большинства вариантов применения этим можно пренебречь.

Рисунок 9a — Гистерезис тонкопленочного (A) и спирального проволочного (B) элементов

Термопреобразователи сопротивления. Характеристики, расшифровка условного обозначения термопреобразователей сопротивления ТСМ, ТСП, ТСПУ, ТСМУ, Метран.

Rt = R0 (1 α * t)

www.eti.su

Таблица 1

Rt = f(t)

Rt = Wt * R0

где Rt — сопротивление ТС при температуре t, Ом; Wt — значение отношения сопротивлений при температуре t к сопротивлению при 0°С (R0). Значения Wt выбираются из таблиц ГОСТ Р50353-92. Диапазоны применения термопреобразователей сопротивления различных типов и классов, формулы расчета предельных погрешностей и НСХ приведены в табл. 1 и 2.

Таблица 2

Номинальные статические характеристики термопреобразователей сопротивления

t°C

   ТС, R1, Ом

t°C

   ТС, R1, Ом

W100 = 1,3910

W100 = 1,4280

W100 = 1,3910

W100 = 1,4280

50П

100П

50М

100М

50П

100П

50М

100М

-240

1,35

2,70

—  

—  

650

166,55

333,10

-200

8,65

17,31

6,08

12,16

700

174,46

348,93

-160

17,27

34,55

14,81

29,62

750

1 82,23

364,47

 —

-120

25,68

51,36

23,84

47,69

800

1 89,86

379,72

-80

33,97

67,81

32,71

65,42

850

197,33

394,67

— 

-40

42,00

84,01

41,40

82,81

900

204,66

409,33

50,00

100,00

50,00

100,00

950

211,85

423,70

50

59,85

119,71

60,70

121,40

1000

218,89

437,78

 —

100

69,55

139,10

71,40

142,80

1050

225,78

451,56

150

79,11

158,22

82,08

164,19

1100

232,52

465,05

 —

200

88,51

177,03

92,79

185,58

1150

 —

 —

250

97,77

195,55

1200

300

106,89

213,78

1250

350

115,85

231,71

 —

1300

400

124,68

249,36

1400

 —

 —

450

133,35

266,71

1500

 —

500

141,88

283,76

 —

1600

550

150,25

300,51

1700

600

158,48

316,96

 —

 —

 —

Продолжение статьи здесь: Термопреобразователи сопротивления. Устройство, характеристики, схемы термопреобразователей сопротивления.

www.eti.su

При сравнении точности / взаимозаменяемости значение со знаком «± « в процентах действительно только для температуры плавления льда. Чтобы определить точность при планируемой рабочей температуре, поставщик должен предоставить значение точности с выражением для него, как показано на рисунке 11a.

Рисунок 11a — Классы точности платиновых ТС согласно стандартам IEC 60751 и ASTM E1137, и ГОСТ 6651-2009

Существует несколько классов точности / взаимозаменяемости ТС, которые устанавливают взаимосвязь между допустимой погрешностью для данного типа ТС при данной температуре и эталоном. См. рисунок 11a Максимальная допустимая погрешность первичного преобразователя, обеспечивающая взаимозаменяемость при данной температуре технологического процесса, определяется двумя классами, классом А и классом В.

Рисунок 11b — Идеальная характеристика, установленная стандартами, и допустимые отклонения от нее для датчиков класса A и класса B

Следует также отметить, что допустимая погрешность увеличивается по мере того, как температура отдаляется от точки плавления льда, где сопротивление равно R0. См. рисунок 11c. Типовые данные изготовителя для конкретного первичного преобразователя указываются в его листе технических данных. См. рисунок 11d. Существуют другие классы, как показано на рисунке 11a, но классы A и B наиболее часто используются в промышленности.

Рисунок 11c — Взаимозаменяемость элементов проволочных ТС по классам в зависимости от температуры

Рисунок 11d — Данные взаимозаменяемости конкретных изделий

11.2 Погрешность взаимозаменяемости первичных преобразователей

Погрешность взаимозаменяемости первичного преобразователя определяется как разница между фактической характеристикой ТС и идеальной характеристикой ТС.

См. рисунок 11b и рисунок 11.2a. В стандарте IEC для определения аппроксимации идеальной кривой используется только сопротивление при температуре плавления льда, R0, и значение коэффициента альфа первичного преобразователя. Однако из-за отклонений точности при изготовлении и степени чистоты платины каждый отдельный первичный преобразователь будет иметь свою собственную уникальную характеристику, которая будет слегка отличаться от идеальной характеристики.

Рисунок 11.2a — Погрешность взаимозаменяемости первичных преобразователей

Стандарт IEC определяет выходной сигнал датчика Pt100 с помощью уравнения 4-ого порядка, которое было разработано Хью Лонгборном Календаром и М.С. Ван Дюзеном и в настоящее время известно как уравнение Календар -Ван-Дюзена (CVD). См. рисунок 12a. Уравнение CVD можно использовать для определения этой уникальной характеристики ТС, найдя постоянные CVD с помощью калибровки или процедуры построения характеристики.

12. Уравнение Календар-Ван-Дюзена

Уравнение Календар-Ван-Дюзена предлагает альтернативу той методике калибровки, которая предложена стандартом IEC 60751. Оно используется для согласования измерительного преобразователя и первичного преобразователя с целью получения характеристики, которая близко аппроксимирует зависимость сопротивления ТС от температуры.

Эту кривую можно построить для любого ТС, подставив конкретные значения четырех постоянных ТС в уравнение Календар-Ван-Дюзена, которое запрограммировано во многих интеллектуальных измерительных преобразователях. См. рисунок 12a. Таким образом, измерительный преобразователь использует фактическую характеристику ТС, а не идеальную характеристику для преобразования сигнала сопротивления первичного преобразователя в значение температуры, чем обеспечивает превосходную точность системы.

Хотя это согласование как правило не требуется для всех измерений параметров технологического процесса, очевидно, оно необходимо для тех измерений, которые требуют наибольшей возможной точности.

Рисунок 12a — Уравнение Календар-Ван-Дюзена

СОВЕТ: Сборку измерительного преобразователя — первичного преобразователя температуры можно наглядно представить как «хороший — лучший — наилучший», где измерительный пре образователь, используемый с первичным преобразователем класса B — это «хороший» узел; измерительный преобразователь, используемый с первичным преобразователем класса A — это «лучший», а измерительный преобразователь, используемый с первичным преобразователем, в котором применяется метод постоянныx — это «наилучший» узел.

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Рисунок 12b — Хороший — Лучший — Наилучший: Сравнение калибровки систем, использующих первичные преобразователи класса B, первичные преобразователи класса A и метод CVD

13. Стабильность и дрейф показаний ТС

Стабильность связана с величиной дрейфа показаний первичного преобразователя и представляет собой взаимосвязь изначальной характеристики сопротивления первичного преобразователя с его характеристикой после некоторого периода эксплуатации. Скорости дрейфа показаний, указываемые изготовителем для конкретного первичного преобразователя, необходимо рассматривать как применимые в контролируемых внешних условиях, «подобных лабораторным». Фактический дрейф в промышленной системе может сильно отличаться от указанного.

Различные факторы влияют на стабильность платиновых первичных преобразователей в промышленных системах, и определенно она не будет настолько хорошей, как дрейф показаний, указанный при 0,0°C (32,0°F) в контролируемой среде. Термические и механические напряжения вызывают физические изменения в кристаллической структуре платины, приводя к отклонению от штатной кривой зависимости сопротивления от температуры.

Химические реакции, в которых участвует платина и примеси, а также перенос внутренних материалов, также могут оказывать влияние на выходной сигнал первичного преобразователя. Еще одним фактором влияния является шунтирующий эффект из-за снижения сопротивления изоляции. Эксплуатация при повышенных температурах увеличивает скорость химических реакций, чем вызывает увеличение дрейфа показаний.

Дрейф, вызванный этими условиями, обычно не является катастрофическим и его можно считать очень маленьким при эксплуатации при температурах ниже 300 °C (572 °F). (Обычно изменение в точке R0 {amp}lt; ±0,05 °C (0,09 °F)). Эксплуатация при более высоких температурах сильно увеличивает скорость дрейфа показаний.

Устройство и назначение термосопротивлений – виды, типы конструкции, классы допуска

Например, при 500 °C (932 °F) дрейф может составить 0,35 °C (0,63 °F) через 1000 часов работы. См. рисунок 13a. Периодическое повторение режимов работы вносит небольшой вклад в дрейф показаний, который увеличивается по мере роста количества накопленных периодических циклов повторения режимов работы и максимальной температуры, достигаемой в каждом цикле. Обычно этот вклад пренебрежимо мал.

Рисунок 13a — Смещение R0 со временем в зависимости от температуры

14. Международные стандарты ТС

Взаимосвязь между сопротивлением и температурой первичных преобразователей ТС регламентируется несколькими международным стандартами. Ранее, особенно до 1990 г., существовало много разных «стандартов» на промышленные ТС. Во многих использовались свои собственные коэффициенты ввиду уникального легирования платины.

На сегодняшний день существуют только два широко применяемых стандарта: ASTM 1137 (американский) и IEC 60751 (международный). Стандарт Международной электротехнической комиссии IEC 60751 описывает идеальную измеряемую зависимость сопротивления платиновых ТС от температуры. См. рисунок 14a. Стандарты многих стран имеют в своей основе этот стандарт IEC.

Стандарт IEC 60751 эквивалентен стандартам DIN 43760 и BS-1904 и заменяет их.

IEC 60751 также эквивалентен японскому стандарту JIS C 1604 и российскому ГОСТ 6651-2009.

Стандарт Американского общества по испытаниям материалов (ASTM) E1137. Этот стандарт распространяется на платиновые ТС со средним температурным коэффициентом сопротивления 0,00385 %/ °C в диапазоне температур от 0 до 100 °C и номинальным сопротивлением при температуре 0°C равным 100 Ом или другому указанному значению. Этот стандарт охватывает платиновые ТС, пригодные для использования во всем или в части диапазона температур от -200 до 650 °C.

JJG 229 — это китайский стандарт, известный также как «Нормативные требования к промышленным платиновым и медным резистивным термометрам». Он аналогичен стандарту IEC 60751.

Рисунок 14a — Сравнение требований международных стандартов

Оцените статью
MALIVICE.RU
Adblock
detector