Тепловой расчт системы отопления правила расчета тепловой нагрузки

Расчет размеров и количества радиаторов

17. При оснащении узла учета регистрирующими приборами расхода (или водосчетчиками) и температуры теплоносителя (рис.1а, 1б) определение количества потребленной тепловой энергией производится по одной из формул, приведенных в п.4.

Рис.1а

Рис.1б

ТС — тепловая сеть

СТ — система теплопотребления

— трубопровод подающий (подводящий)

— трубопровод обратный (отводящий)

— измеряемые величины

— прибор регистрирующий

Тепловой расчт системы отопления правила расчета тепловой нагрузки

— теплосчетчик

— водосчетчик

Значения величин , , а также , следует принимать по результатам измерений на узле учета потребителей тепловой энергии, значение — как среднее за отчетный период значение по результатам измерений на источнике тепла.

. (7)

, (8)

где — количество тепловой энергии, измеренное теплосчетчиком за расчетный период, Гкал (ГДж);

— тепловая энергия, неучтенная теплосчетчиком вследствие того, что фактическая энтальпия исходной холодной воды, используемой для подпитки тепловой сети на источнике тепла, теплосчетчиком не определяется, Гкал (ГДж).

, (9)

где и — определяются по показаниям теплосчетчика, т;

— принимается как среднее за расчетный период значение энтальпии исходной холодной воды по результатам измерений на источнике тепла, ккал/кг (кДж/кг);

2) при введении в теплосчетчик с помощью задатчика фиксированной температуры (энтальпии) холодной воды на источнике теплоснабжения и реализации теплосчетчиком формулы

, (10)

. (11)

19. При оснащении узла учета абонента однопоточным двухточечным теплосчетчиком на одном из трубопроводов и водосчетчиком на другом (рис.3а, 3б) количество потребленной тепловой энергии, Гкал (ГДж), определяется по формуле (8), где — тепловая энергия потребленного теплоносителя, не возвращенного в тепловую сеть.

Рис.3а

Рис.3б

1) при (7а), что соответствует установке преобразователя расхода теплоносителя на подающем трубопроводе (рис.3а), —

. (9а)

В этой формуле значения , и определяются теплосчетчиком, — водосчетчиком, а принимается как среднее значение по результатам измерений на источнике тепла;

2) при (7б), что соответствует установке преобразователя расхода теплоносителя на обратном трубопроводе (рис.3б), —

. (9б)

Здесь значения , и определяются теплосчетчиком, — водосчетчиком, принимается как среднее значение по результатам измерений на источнике тепла.

При выявлении равенства значений расхода теплоносителя в подающем и обратном трубопроводах ( ) количество потребленной тепловой энергии определяется показаниями теплосчетчика ( ).

https://www.youtube.com/watch?v=Ur_SpsKOPso

20. Количество потребленного теплоносителя определяется за расчетный период по результатам измерений на узле учета по формуле (6).

тепловая нагрузка на отопление

21. В системах теплопотребления без непосредственного водоразбора на горячее водоснабжение из тепловой сети, при оснащении узла учета одним однопоточным двухточечным теплосчетчиком, с обязательной установкой его преобразователя расхода теплоносителя на подающем трубопроводе (рис.4), определение потребленной тепловой энергии осуществляется по формуле (8), в которой значение величины определяется формулой (7) при , а значение величины — формулой (9б).

При этом количество потребленного теплоносителя (не возвращенного в тепловую сеть) , определяется из водного баланса системы теплоснабжения по методике, приведенной в разделе 7, а — как среднее значение по результатам измерений температуры и давления исходной холодной воды на источнике тепла.

22. При комплектации узла учета регистрирующими расходомерами или водосчетчиками на подающем и обратном трубопроводах (рис.5) определение потребленной тепловой энергии в системах теплопотребления как с непосредственным водоразбором на горячее водоснабжение, так и без него производится по формуле (1).

Значения и определяются по показаниям приборов на узле учета, а и — по средним за расчетный период значениям температуры теплоносителя в подающем и обратном трубопроводах на источнике тепла с учетом снижения температуры теплоносителя в трубопроводах на участке тепловой сети от источника до рассматриваемого потребителя.

При этом размеры соответствующего снижения температуры теплоносителя в подающем и обратном трубопроводах тепловой сети на этом участке должны быть указаны в договоре теплоснабжения. Среднее значение следует принимать по информации об измерениях температуры и давления исходной холодной воды, используемой для подпитки тепловой сети на источнике тепла.

Определение количества использованного потребителем теплоносителя за расчетный период производится по разнице показаний установленных приборов согласно формуле (6).

23. При оснащении узла учета только водосчетчиком на подающем трубопроводе (или регистрирующим расходомером) в системе теплопотребления без непосредственного водоразбора на горячее водоснабжение (рис.6) определение количества тепловой энергии производится по формуле (2).

В этом случае значение принимается по показаниям установленного прибора, а значение , являющегося утечкой теплоносителя, определяется из водного баланса системы теплоснабжения (раздел 7). Значения энтальпии , и следует принимать в соответствии с указаниями п.22.

, (16а)

Тепловой расчт системы отопления правила расчета тепловой нагрузки

где — потери теплоносителя вследствие нормативной утечки, т;

— потери теплоносителя вследствие неустановленной сверхнормативной утечки, т;

https://www.youtube.com/watch?v=dFLW96z0YVk

— потери теплоносителя технологические, т;

— потери теплоносителя вследствие установленной сверхнормативной утечки, т.

, (19)

где — емкость трубопроводов тепловой сети теплоснабжающей организации, а также тепловой сети и систем теплопотребления абонентов, м ;

— плотность теплоносителя (сетевой воды), кг/м .

Значение плотности теплоносителя следует принимать в соответствии со средней за расчетный период температурой теплоносителя в подающем и обратном трубопроводах тепловой сети (системах теплопотребления).

Тепловой расчт системы отопления правила расчета тепловой нагрузки

38. Потери теплоносителя технологические, а также вследствие установленной сверхнормативной утечки за расчетный период определяются по соответствующим нормативам, а также актам, оформленным в связи с этими потерями.

, (20)

где — общее количество теплоносителя, невозвращенного в тепловую сеть в расчетном периоде, т;

— общее количество израсходованного теплоносителя, измеренное и учтенное на узлах учета абонентов, т;

— общее количество теплоносителя, потерянного в связи с нормативной утечкой за отчетный период из тепловой сети теплоснабжающей организации, участков тепловой сети абонентов, где узлы учета расположены не на границах балансовой принадлежности, участков тепловой сети абонентов и их систем теплопотребления, не оснащенных узлами учета, т;

— общее количество теплоносителя, утерянного с технологической утечкой из тепловой сети теплоснабжающей организации, участков тепловой сети абонентов, где узлы учета размещены не на границе балансовой принадлежности, участков тепловой сети абонентов и их систем теплопотребления, не оснащенных узлами учета, (оформляется соответствующими актами);

— общее количество теплоносителя, потерянного вследствие установленной сверхнормативной утечки, оформленное соответствующими актами, т.

, (20а)

где — общее количество теплоносителя, приходящегося за расчетный период на водоразбор абонентами без приборов учета потребленных тепловой энергии и теплоносителя, т; определяется по формуле (18).

— тепловая сеть теплоснабжающей организации;

— участки тепловой сети абонентов, узлы учета которых размещены не на границе балансовой принадлежности;

— участки тепловой сети и системы теплопотребления абонентов, не оснащенных приборами учета;

— участки тепловой сети и системы теплопотребления абонентов, использующих приборно-расчетный метод учета в связи с тем, что в одном из трубопроводов узла учета количество теплоносителя не измеряется.

, (21)

где — емкость элемента системы теплоснабжения (тепловой сети или систем теплопотребления абонентов), м .

Этажность жилой Характеристика зданий Расчетная температура наружного воздуха для проектирования отопления , °С
постройки минус 5 минус 10 минус 15 минус 20 минус 25 минус 30 минус 35 минус 40 минус 45 минус 50 минус 55
Для постройки до 1985 г.
1 — 2 Без учета и внедрения энергосберегающих мероприятий 148 154 160 205 213 230 234 237 242 255 271
3 — 4

5 и более

95

65

102

70

109

77

117

79

126

86

134

88

144

98

150

102

160

109

169

115

179

122

1 — 2 С учетом внедрения энергосберегающих мероприятий 147 153 160 194 201 218 222 225 230 242 257
3 — 4

5 и более

90

65

97

69

103

73

111

75

119

82

128

88

137

92

140

96

152

103

160

109

171

116

Для постройки после 1985 г.
1 — 2 По новым типовым проектам 145 152 159 166 173 177 180 187 194 200 208
3 — 4

5 и более

74

65

80

67

86

70

91

73

97

81

101

87

103

87

109

95

116

100

123

102

130

108

Примечания: 1. Энергосберегающие мероприятия обеспечиваются проведением работ по утеплению зданий при капитальных и текущих ремонтах, направленных на снижение тепловых потерь.

2. Укрупненные показатели зданий по новым типовым проектам приведены с учетом внедрения прогрессивных архитектурно-планировочных решений и применения строительных конструкций с улучшенными теплофизическими свойствами, обеспечивающими снижение тепловых потерь.

  1. Как выполнить расчет тепловой мощности радиаторов отопления при известном количестве секций?

Общие требования

Эффективность нагревателей

Мощность — это физическое определение скорости передачи или потребления энергии. Она равна отношению количества работы за определённый промежуток времени к этому периоду. Нагревательные устройства характеризуются по расходу электричества в киловаттах.

Для сопоставления энергий различного рода введена формула тепловой мощности: N = Q / Δ t, где:

  1. Q — количество теплоты в джоулях;
  2. Δ t — интервал времени выделения энергии в секундах;
  3. размерность полученной величины Дж / с = Вт.

Для оценки эффективности работы нагревателей используют коэффициент, указывающий на количество израсходованного по назначению тепла — КПД. Определяется показатель делением полезной энергии на затраченную, является безразмерной единицей и выражается в процентах. По отношению к разным частям, составляющим окружающую среду, КПД нагревателя имеет неравные значения.

Объяснение этому простое: из-за теплообмена с окружением часть температуры рассеивается и теряется. Количество утраченной энергии зависит от проводимости материалов и других факторов. Можно рассчитать теоретически мощность тепловых потерь по формуле P = λ × S Δ T / h. Здесь λ — коэффициент теплопроводности, Вт/(м × К); S — площадь участка теплообмена, м²; Δ T — перепад температур на контролируемой поверхности, град. С; h — толщина изолирующего слоя, м.

Из формулы понятно, что для повышения мощности надо увеличить количество радиаторов отопления и площадь теплоотдачи. Уменьшив же поверхность контакта с внешней средой, минимизируют потери температуры в помещении. Чем массивнее стена здания, тем меньше будет утечка тепла.

Расчёт теплопотерь в доме

10. Определение количеств отпущенных в тепловую сеть тепловой энергии и теплоносителя на источнике тепла должно производиться только приборным методом.

и ( и ) — массовый (объемный) расход теплоносителя в подающем и обратном трубопроводах на выводах источника тепла, т/ч (м /ч);

, и ( , и ) — энтальпия (температура) теплоносителя в подающем, обратном трубопроводах тепловой сети на выводах источника тепла и исходной холодной воды, используемой для подготовки подпиточной воды, ккал/кг (кДж/кг) (°С);

https://www.youtube.com/watch?v=tGvIg-I1QCU

— продолжительность отпуска тепловой энергии и теплоносителя в расчетном перио

де, ч.

12. Суммарный отпуск тепловой энергии источником тепла, имеющим несколько выводов тепловой сети, определяется суммированием результатов по всем выводам тепловой сети.

. (6а)

14. При определении отпущенных в тепловую сеть тепловой энергии и теплоносителя допустимо вместо разности (или ) использовать измеренное значение массы (объема) подпиточной воды (или ), направленной в тепловую сеть, при обязательном соблюдении условия (или ).

15. В случае комплектации узла учета на источнике тепла двухпоточным трехточечным теплосчетчиком, измеряющим значения величин , , , и и реализующим формулу (1), количество отпущенной тепловой энергии определяется непосредственно теплосчетчиком.

16. При оборудовании узла учета источника тепла регистрирующими приборами расхода (или водосчетчиками) и температуры теплоносителя, установленными на подающем, обратном трубопроводах и на подпиточном трубопроводе, количество отпущенной тепловой энергии определяется по результатам измерений в соответствии с формулами (1)-(4) или (1а)-(4а).

Рис.1а

Рис.1б

ТС — тепловая сеть

— теплосчетчик

https://www.youtube.com/watch?v=mVNWfHKN-Pw

— водосчетчик

. (7)

, (8)

, (9)

Тепловой расчт системы отопления правила расчета тепловой нагрузки

, (10)

. (11)

Рис.3а

Рис.3б

. (9а)

Тепловой расчт системы отопления правила расчета тепловой нагрузки

. (9б)

24. При временном отсутствии у потребителя тепловой энергии (абонента) приборов учета, или в период до их установки, для определения потребленных тепловой энергии и теплоносителя применяется расчетный метод учета.

25. Количество тепловой энергии и теплоносителя, использованных отдельным абонентом без приборов учета, рассматривается как соответствующая часть общего количества тепловой энергии и теплоносителя, потребленного всеми абонентами без приборов учета в системе теплоснабжения.

Тепловые потери через изоляцию трубопроводов на участках тепловой сети, находящихся на балансе соответствующего абонента, включаются в количество тепловой энергии, потребленной этим абонентом, так же как и потери тепловой энергии со всеми видами утечки и сливом теплоносителя из систем теплопотребления и трубопроводов его участка тепловой сети.

, (12)

где — тепловая энергия, отпущенная источником теплоснабжения в тепловую сеть за расчетный период, Гкал (ГДж);

— суммарное количество тепловой энергии, потребленной абонентами, теплопотребление которых определено приборным и приборно-расчетным методами учета, включая все виды тепловых потерь на участках тепловой сети, находящихся на балансе этих абонентов, за расчетный период, Гкал (ГДж);

Тепловой расчт системы отопления правила расчета тепловой нагрузки

— потери тепловой энергии трубопроводами тепловой сети теплоснабжающей организации, связанные со всеми видами утечки и слива теплоносителя, Гкал (ГДж);

— тепловые потери трубопроводами тепловой сети теплоснабжающей организации через тепловую изоляцию, Гкал (ГДж).

27. Потери тепловой энергии в формуле (12) складываются из тепловых потерь, обусловленных нормативной и технологической утечкой теплоносителя, а также тепловых потерь вследствие сверхнормативной установленной (зафиксированной соответствующими актами) и неустановленной утечки теплоносителя из трубопроводов тепловой сети теплоснабжающей организации за расчетный период.

— по указаниям раздела 3;

— по указаниям разделов 4 и 5;

, — по указаниям раздела 7.

, (13)

где — тепловая энергия, использованная за расчетный период абонентами без приборов учета на покрытие отопительно-вентиляционной тепловой нагрузки, Гкал (ГДж);

— то же, на горячее водоснабжение, Гкал (ГДж);

расчетная тепловая нагрузка на отопление

— потери тепловой энергии через изоляцию трубопроводов на участке тепловой сети, находящейся на балансе абонентов без приборов учета, за расчетный период, Гкал (ГДж);

— потери тепловой энергии со всеми видами утечки теплоносителя из систем теплопотребления абонентов без приборов учета и участков тепловой сети на их балансе за расчетный период, Гкал (ГДж).

. (13а)

Количество тепловой энергии, использованной абонентами без приборов учета на горячее водоснабжение, определяется по средним часовым значениям их нагрузки горячего водоснабжения (Приложение 1).

Величины и определяются по указаниям раздела 7.

, (14)

где — суммарное теплопотребление всех абонементов без приборов учета на отопление и приточную вентиляцию за расчетный период, Гкал (ГДж);

методика расчета тепловой нагрузки здания

— расчетная часовая тепловая нагрузка рассматриваемого абонента на отопление и приточную вентиляцию, внесенная в договор теплоснабжения, Гкал/ч (ГДж/ч);

— суммарная расчетная часовая тепловая нагрузка на отопление и приточную вентиляцию всех абонентов без приборов учета, Гкал/ч (ГДж/ч).

Методические рекомендации по определению расчетных часовых тепловых нагрузок отопления, приточной вентиляции и горячего водоснабжения приведены в приложении 1 к настоящим Рекомендациям.

, (13б)

В этой формуле значения входящих величин относятся к каждому абоненту без приборов учета.

, (15)

где — общее количество отпущенного в тепловую сеть и не возвращенного на источник тепла теплоносителя в системе теплоснабжения (полная утечка), т;

— количество теплоносителя, не возвращенного в тепловую сеть, определенное приборами учета абонентов, т;

— количество теплоносителя, утраченного в тепловой сети теплоснабжающей организации вследствие утечки всех видов, т; определяется по указаниям раздела 7.

, (16)

где — потери теплоносителя вследствие нормативной утечки из систем теплопотребления абонентов без приборов учета и участков тепловой сети, находящихся на их балансе, за расчетный период, т;

— то же, вследствие неустановленной сверхнормативной утечки, т;

— то же, технологические, т;

— то же, вследствие сверхнормативной установленной утечки, т.

Определение указанных выше величин, а также их значений для каждого абонента без приборов учета производится по указаниям раздела 7.

, (17)

где — количество теплоносителя, отбираемого за расчетный период на горячее водоснабжение (водоразбор) всеми абонентами без приборов учета, т.

Диаметр труб, мм Удельная емкость, м Диаметр труб, мм Удельная емкость, м Диаметр труб, мм Удельная емкость, м
условный наружный условный наружный условный наружный
25 32 0,00057 150 159 0,0177 500 530 0,207
32 38 0,00085 175 194 0,027 600 630 0,296
40 45 0,0013 200 219 0,033 700 720 0,387
50 57 0,002 250 273 0,053 800 820 0,502
70 76 0,0039 300 325 0,075 900 920 0,636
80 89 0,0053 350 377 0,101 1000 1020 0,785
100 108 0,0079 400 426 0,135 1100 1120 0,944
125 133 0,0123 450 480 0,169 1200 1220 1,1234
  1. Для расчета берутся укрупненные показатели.
  2. За базу принимаются показатели конструктивных элементов здания. Здесь будет важен и расчет потерь тепла, идущего на прогрев внутреннего объема воздуха.
  3. Рассчитываются и суммируются все входящие в систему отопления объекты.
  • Материал и толщина стен. К примеру, стена из кирпича в 25 сантиметров и стена из газобетона в 15 сантиметров способны пропустить разное количество тепла.
  • Материал и структура крыши. Например, теплопотери плоской крыши из железобетонных плит значительно отличаются от теплопотерь утепленного чердака.
  • Вентиляция. Потеря тепловой энергии с отработанным воздухом зависит от производительности вентиляционной системы, наличия или отсутствия системы рекуперации тепла.
  • Площадь остекления. Окна теряют больше тепловой энергии по сравнению со сплошными стенами.
  • Уровень инсоляции в разных регионах. Определяется степенью поглощения солнечного тепла наружными покрытиями и ориентацией плоскостей зданий по отношению к сторонам света.
  • Разность температур между улицей и помещением. Определяется тепловым потоком через ограждающие конструкции при условии постоянного сопротивления теплопередаче.
ЧИТАТЬ ДАЛЕЕ:  Как подключить 2 нагрузки с выдержкой времени на включение

Общие требования

Этаж- ность жилой

Характерис- тика зданий

Расчетная температура наружного воздуха
для проектирования отопления

пост- ройки

минус 5

минус 10

минус 15

минус 20

минус 25

минус 30

минус 35

минус 40

минус 45

минус 50

минус 55

Для постройки до 1985 г.

1 — 2

Без учета и внедрения энергосбе- регающих мероприятий

148

154

160

205

213

230

234

237

242

255

271

3 — 4
5 и более

95

65

102

70

109

77

117

79

126

86

134

88

144

98

150

102

160

109

169

115

179

122

1 — 2

С учетом внедрения энергосбе- регающих мероприя- тий

147

153

160

194

201

218

222

225

230

242

257

3 — 4

5 и более

90

65

97

69

103

73

111

75

119

82

128

88

137

92

140

96

152

103

160

109

171

116

Для постройки после 1985 г.

1 — 2

По новым типовым проектам

145

152

159

166

173

177

180

187

194

200

208

3 — 4

5 и более

74

65

80

67

86

70

91

73

97

81

101

87

103

87

109

95

116

100

123

102

130

108

Примечания: 1. Энергосберегающие мероприятия обеспечиваются проведением работ по утеплению зданий при капитальных и текущих ремонтах, направленных на снижение тепловых потерь.

2. Укрупненные показатели зданий по новым типовым проектам приведены с учетом внедрения прогрессивных архитектурно-планировочных решений и применения строительных конструкций с улучшенными теплофизическими свойствами, обеспечивающими снижение тепловых потерь.

Определяемые величины

Единица измерения

Формула

Суммарные потери давления в трубопроводах на трение и в местных сопротивлениях

Па

Удельные потери давления на трение

Па/м

Внутренний диаметр труб

м

Приведенная длина трубопровода

-«-

Эквивалентная длина местных сопротивлений*

-«-

Коэффициент гидравлического трения:

для области квадратичного закона (при

)

для любых значений числа Рейнольдса (приближенно)

Предельное число Рейнольдса, характеризующее границы областей: переходной и квадратичного закона

________________

* При отсутствии данных о характере и количестве местных сопротивлений на трубопроводах тепловых сетей суммарную эквивалентную длину местных сопротивлений на участке трубопроводов допускается определять умножением длины трубопровода на поправочный коэффициент , принимаемый по рекомендуемому приложению 5*.

Показатели исходной водопроводной воды (средние за год)

Способ противокоррозионной и противонакипной обработки воды в зависимости от вида труб

индекс насыщения карбонатом кальция

J при 60 °С

суммарная концентрация хлоридов и сульфатов, мг/л

перманга- натная окисля- емость, мг О/л

стальные трубы без покрытия совместно с оцинкованными трубами

оцинко- ванные трубы

стальные трубы с внутренними неметаллическими покрытиями или термостойкие пластмассовые трубы

1

2

3

4

5

6

0-6

ВД

ВД

{amp}gt; 50

0-6

ВД С

ВД С

0-6

С

С

0-6

С

{amp}gt; 3

С

С М

М

М

0-6

M

М

М

51 — 75

0-6

С

С

76 — 150

0-6

ВД

С

{amp}gt; 150

0-6

ВД С

ВД

51 — 200

{amp}gt; 3

С

С

51 — 200

С М

С М

М

{amp}gt; 200

{amp}gt; 3

ВД

ВД

{amp}gt; 200

ВД М

ВД М

М

51 — 200

0-6

С М

С М

М

201 — 350

0-6

ВД М

С М

М

{amp}gt; 350

0-6

ВД М

ВД М

М


Примечания: 1. В гр. 4-6 приняты следующие обозначения способов обработки воды — противокоррозионная: ВД — вакуумная деаэрация; С — силикатная; противонакипная: М — магнитная. Знак «-» означает, что обработка воды не требуется.

2. Значение индекса насыщения карбонатом кальцияопределяется в соответствии со СНиП 2.04.02-84, а средние за год концентрации хлоридов, сульфатов и других растворенных в воде веществ — по ГОСТ 2761-84. При подсчете индекса насыщения следует вводить поправку на температуру, при которой определяется водородный показатель рН.

3. Суммарную концентрацию хлоридов и сульфатов следует определять по выражению .

4. Содержание хлоридов в исходной воде согласно ГОСТ 2874-82 не должно превышать 350 мг/л, а сульфатов- 500 мг/л.

5. Использование для горячего водоснабжения исходной воды с окисляемостью более 6 мг О/л, определенной методом окисления органических веществ перманганатом калия в кислотной среде, как правило, не допускается. При допущении органами Минздрава СССР цветности исходной воды до 35° окисляемость воды может быть допущена более 6 мг О/л.

6. При наличии в тепловом пункте пара вместо вакуумной деаэрации следует предусматривать деаэрацию при атмосферном давлении с обязательной установкой охладителей деаэрированной воды.

7. Если в исходной воде концентрация свободной углекислоты превышает 10 мг/л, то после вакуумной деаэрации следует проводить подщелачивание.

8. Магнитная обработка применяется при общей жесткости воды не более 10 мг-экв/л и карбонатной жесткости (щелочности) более 4 мг-экв/л. Напряженность магнитного поля в рабочем зазоре магнитного аппарата не должна превышать А/Н.

9. При содержании в воде железа более 0,3 мг/л следует предусматривать обезжелезивание воды независимо от наличия других способов обработки воды.

10. Силикатную обработку воды и подщелачивание следует предусматривать путем добавления в исходную воду раствора жидкого натриевого стекла по ГОСТ 13078-81.

11. При среднечасовом расходе воды на горячее водоснабжение менее 50 т/ч деаэрацию воды предусматривать не следует

  • назначение здания и его тип;
  • конфигурацию каждого помещения;
  • количество жильцов;
  • географическое положение и регион, в котором находится населенный пункт;
  • прочие параметры. 

Для помещения

  1. Что влияет на потребность квартиры, комнаты или дома в тепле?
  • вычисление теплопотерь с использованием укрупненных показателей;
  • определение теплоотдачи установленного в здании отопительно-вентиляционного оборудования;
  • вычисление значений с учетом различных элементов ограждающих конструкций, а также добавочных потерь, связанных с нагревом воздуха.
  1. Сезонные нагрузки, имеющие следующие особенности:

    — им присущи изменения в зависимости от температуры окружающего воздуха на улице;
    — наличие отличий в величине расхода тепловой энергии в соответствии с климатическими особенностями региона местонахождения дома;
    — изменение нагрузки на отопительную систему в зависимости от времени суток. Поскольку наружные ограждения имеют теплостойкость, данный параметр считается незначительным;
    — расходы тепла вентиляционной системы в зависимости от времени суток.

  2. Постоянные тепловые нагрузки. В большинстве объектов системы теплоснабжения и горячего водоснабжения они используются на протяжении года. Например, в теплое время года расходы тепловой энергии в сравнении с зимним периодом снижаются где-то на 30-35%.
  3. Сухое тепло. Представляет собой тепловое излучение и конвекционный теплообмен за счет иных подобных устройств. Определяют данный параметр при помощи температуры сухого термометра. Он зависит от многих факторов, среди которых окна и двери, системы вентиляции, различное оборудование, воздухообмен, происходящий за счет наличия щелей в стенах и перекрытиях. Также учитывают количество людей, присутствующих в помещении.
  4. Скрытое тепло. Образуется в результате процесса испарения и конденсации. Температура определяется при помощи влажного термометра. В любом по назначению помещении на уровень влажности влияют:

    — численность людей, одновременно находящихся в помещении;
    — наличие технологического или другого оборудования;
    — потоки воздушных масс, проникающих сквозь щели и трещины, имеющиеся в ограждающих конструкциях здания.

  1. Определение общего количества секций, необходимых для эффективного отопления помещения.
  2. Определение количества радиаторов.
    1. Определение расчетных расходов теплоносителя в тепловой сети

Гидравлический расчет

а) на отопление

б) на вентиляцию

в) на горячее водоснабжение в открытых системах теплоснабжения: средний —

максимальный —

максимальный —

5.3. Суммарные расчетные расходы сетевой воды, кг/ч, в двухтрубных тепловых сетях в открытых и закрытых системах теплоснабжения при качественном регулировании отпуска теплоты следует определять по формуле

. (17)

Коэффициент, учитывающий долю среднего расхода воды на горячее водоснабжение при регулировании по нагрузке отопления, следует принимать по табл.2. При регулировании по совмещенной нагрузке отопления и горячего водоснабжения коэффициент принимается равным 0.

Таблица 2

Системы теплоснабжения с тепловым потоком

Значение коэффициента

Открытая, МВт:

100 и более

0,6

менее 100

0,8

Закрытая, МВт:

100 и более

1,0

менее 100

1,2

Примечание. Для закрытых систем теплоснабжения при регулировании по нагрузке отопления и тепловом потоке менее 100 МВт при наличии баков-аккумуляторов у потребителей коэффициент следует принимать равным 1.

Для потребителей при при отсутствии баков-аккумуляторов, а также с тепловым потоком 10 МВт и менее суммарный расчетный расход воды следует определять по формуле

. (18)

5.4. Расчетный расход воды, кг/ч, в двухтрубных водяных тепловых сетях в неотопительный период следует определять по формуле

. (19)

При этом максимальный расход воды на горячее водоснабжение, кг/ч, определяется для открытых систем теплоснабжения по формуле (12) при температуре холодной воды в неотопительный период, а для закрытых систем при всех схемах присоединения водоподогревателей горячего водоснабжения — по формуле (14).

Расход воды в обратном трубопроводе двухтрубных водяных тепловых сетей открытых систем теплоснабжения принимается в размере 10% от расчетного расхода воды, определенного по формуле (19).

5.5*. Расчетный расход воды для определения диаметров подающих и циркуляционных трубопроводов и гидравлические расчеты в сетях горячего водоснабжения следует определять в соответствии со СНиП 2.04.01-85.

5.6. Суммарный расчетный расход пара в паровых тепловых сетях, обеспечивающих предприятия с различными суточными режимами работы, следует определять с учетом несовпадения максимальных часовых расходов пара отдельными предприятиями. При отсутствии проектных суточных графиков расхода пара допускается к суммарному расходу пара вводить понижающий коэффициент 0,9.

5.7*. Формулы для расчета трубопроводов тепловых сетей приведены в рекомендуемом приложении 4. Эквивалентную шероховатость внутренней поверхности стальных труб следует принимать:для паровых тепловых сетей — = 0,0002 м; для водяных тепловых сетей — = 0,0005 м; для сетей горячего водоснабжения — = 0,001м.

5.8. Удельные потери давления на трение при гидравлических расчетах водяных тепловых сетей следует определять на основании технико-экономических расчетов. Величину удельных потерь давления для расчета действующих тепловых сетей допускается принимать на основании результатов испытаний. Паровые тепловые сети следует рассчитывать по разнице давлений пара между источником теплоты и потребителями.

5.9. Диаметры подающего и обратного трубопроводов двухтрубных водяных тепловых сетей при совместной подаче теплоты на отопление, вентиляцию и горячее водоснабжение должны приниматься, как правило, одинаковыми.

5.10*. Условный проход труб независимо от расчетного расхода теплоносителя должен приниматься в тепловых сетях — не менее 32 мм, а для циркуляционных трубопроводов горячего водоснабжения — не менее 25 мм.

5.11. Статическое давление в системах теплоснабжения при теплоносителе воде не должно превышать допускаемое давление в оборудовании источника теплоты, в водяных тепловых сетях, в оборудовании тепловых пунктов и в системах отопления, вентиляции и горячего водоснабжения потребителей, непосредственно присоединенных к тепловым сетям, и обеспечивать заполнение их водой.

Если статическое давление превышает допустимые пределы, то следует предусматривать деление водяных тепловых сетей на независимые зоны. Для поддержания статического давления в сетях, отключенных от источника теплоты, в узлах деления (узлах рассечки) следует предусматривать подпиточные устройства с использованием для подпитки воды из тепловых сетей смежной зоны, присоединенной к источнику теплоты. Статическое давление должно определяться условно для температуры воды до 100 °С.

5.12. Давление воды в подающих трубопроводах водяных тепловых сетей при работе сетевых насосов должно приниматься исходя из условий невскипания воды при ее максимальной температуре в любой точке подающего трубопровода, в оборудовании источника теплоты и в приборах систем потребителей, непосредственно присоединенных к тепловым сетям.

5.13. Давление воды в обратных трубопроводах водяных тепловых сетей при работе сетевых насосов должно быть избыточным (не менее 0,05 МПа), не превышать допускаемого давления в системах потребителей и обеспечивать заполнение местных систем.

5.14. Давление воды в обратных трубопроводах водяных тепловых сетей открытых систем теплоснабжения в неотопительный период, а также в подающем и циркуляционном трубопроводах сетей горячего водоснабжения следует принимать не менее чем на 0,05 МПа больше статического давления систем горячего водоснабжения потребителей.

5.15. Давление и температура воды на всасывающих патрубках сетевых, подпиточных, подкачивающих и смесительных насосов не должны превышать допускаемых по условиям прочности конструкций насосов.

5.16. Гидравлические режимы водяных тепловых сетей (пьезометрические графики) следует разрабатывать для отопительного и неотопительного периодов, а также для аварийных режимов. Для открытых систем теплоснабжения дополнительно разрабатываются два режима: при максимальном водоразборе из подающего и обратного трубопроводов в отопительный период.

5.17*. Расходы воды, кг/ч, в тепловых сетях открытых систем теплоснабжения для разработки гидравлических режимов при максимальном водоразборе из подающего или обратного трубопроводов определяются по формуле

где — коэффициент, определяемый по расчету с учетом изменения среднего расхода воды на горячее водоснабжение в зависимости от температурного графика регулирования отпуска теплоты и режима водоразбора из тепловой сети, при отсутствии данных допускается определять по табл. 3.

Таблица 3

Режим

Трубопровод

Значение коэффициента

при центральном качественном регулировании

водоразбора

по нагрузке отопления

по совмещенной нагрузке отопления и горячего водоснабжения

Максимальный:

из подающего

Подающий

1

1,4

трубопровода

Обратный

-1,4

-1

из обратного

Подающий

0,6

1,2

трубопровода

Обратный

-1,8

-1,2

5.18. Напор сетевых насосов следует определять для отопительного и неотопительного периодов и принимать равным сумме потерь давления в установках на источнике теплоты, в подающем и обратном трубопроводах от источника теплоты до наиболее удаленного потребителя и в системе потребителя (включая потери в тепловых пунктах и насосных) при суммарных расчетных расходах воды.

Напор подкачивающих насосов на подающем и обратном трубопроводах следует определять по пьезометрическим графикам при максимальных расходах воды в трубопроводах с учетом гидравлических потерь в оборудовании и трубопроводах источника теплоты. При установке на тепловых сетях подкачивающих насосов напор сетевых насосов на источниках теплоты следует уменьшать на величину рабочего напора подкачивающего насоса.

5.19. Напор подпиточных насосов должен определяться из условий поддержания в водяных тепловых сетях статического давления и проверяться для условий работы сетевых насосов в отопительный и неотопительный периоды. Примечание. Допускается предусматривать установку отдельных групп подпиточных насосов с различными напорами для отопительного, неотопительного периодов и для статического режима.

5.20. Напор смесительных насосов (на перемычке) следует определять по наибольшему возможному перепаду давлений между подающим и обратным трубопроводами в узле установки насоса.

а) насосов для закрытых систем теплоснабжения в отопительный период — по суммарному расчетному расходу воды, определяемому по формуле (17);

ЧИТАТЬ ДАЛЕЕ:  Расчет тепла теплого пола для оптимизации системы отопления

б) на подающих трубопроводах тепловых сетей для открытых систем теплоснабжения в отопительный период — по суммарному расчетному расходу воды, определяемому по формуле (20), при = 1,4; подкачивающих насосов на обратных трубопроводах — по формуле (17) при = 0,6;

в) для закрытых и открытых систем теплоснабжения в неотопительный период — по максимальному расходу воды на горячее водоснабжение в неотопительный период — формуле (19). Примечание. При определении производительности сетевых насосов в открытых системах теплоснабжения следует проверять необходимость учета дополнительного расхода воды для вакуумных деаэраторов.

5.22. Подачу (производительность) рабочих подпиточных насосов в закрытых системах теплоснабжения следует принимать равной расчетному расходу воды на компенсацию утечки из тепловой сети (приложение 23*), а в открытых системах — равной сумме максимального расхода воды на горячее водоснабжение [формула (12)] и расчетного расхода воды на компенсацию утечки (приложение 23*).

5.23*. Число насосов следует принимать:сетевых — не менее двух, один из которых является резервным; при пяти рабочих сетевых насосах в одной группе резервный насос допускается не устанавливать;подкачивающих и смесительных — не менее трех, один из которых является резервным, при этом резервный насос предусматривается независимо от числа рабочих насосов;

подпиточных — в закрытых системах теплоснабжения не менее двух, один из которых является резервным, в открытых системах — не менее трех, один из которых также является резервным;в узлах деления водяной тепловой сети на зоны (в узлах рассечки) допускается в закрытых системах теплоснабжения устанавливать один подпиточный насос без резерва, а в открытых системах — один рабочий и один резервный. Число насосов уточняется с учетом их совместной работы на тепловую сеть.

Особенности расчета тепловых нагрузок

— расход тепла, взятый по максимуму за один час работы системы отопления,

— максимальный поток тепла, исходящий от одного радиатора,

укрупненный расчет тепловой нагрузки

— общие затраты тепла в определенный период (чаще всего – сезон); если необходим почасовой расчет нагрузки на тепловую сеть, то расчет нужно вести с учетом перепада температур в течение суток.

Произведенные расчеты сопоставляют с площадью тепловой отдачи всей системы. Показатель получается достаточно точный. Некоторые отклонения случаются. Например, для промышленных строений нужно будет учитывать снижение потребления тепловой энергии в выходные дни и праздничные, а в жилых помещениях – в ночное время.

Методики для расчета систем отопления имеют несколько степеней точности. Для сведения погрешности к минимуму необходимо использовать довольно сложные вычисления. Менее точные схемы применяются если не стоит цель оптимизировать затраты на отопительную систему.

Стандартная методика расчета тепловой нагрузки здания для обеспечения его эффективного обогрева включает последовательное определение максимального потока тепла от обогревательных приборов (радиаторов отопления), максимального расхода тепловой энергии в час (прочитайте: «Годовой расход тепла на отопление загородного дома «). Также требуется знать общий расход тепловой мощности в течение определенного периода времени, например, за отопительный сезон.

Расчет тепловых нагрузок, в котором учитывается площадь поверхности приборов, участвующих в тепловом обмене, применяют для разных объектов недвижимости. Такой вариант вычислений позволяет максимально правильно рассчитать параметры системы, которая обеспечит эффективный обогрев, а также произвести энергетическое обследование домов и зданий. Это идеальный способ определить параметры дежурного теплоснабжения промышленного объекта, подразумевающего снижение температуры в нерабочие часы.

Согласно действующему СНиП, существует простой метод расчета тепловой нагрузки. На 10 квадратных метров берут 1 киловатт тепловой мощности. Затем полученные данные умножаются на региональный коэффициент:

  • Южные регионы имеют коэффициент 0,7-0,9;
  • Для умеренно-холодного климата (Московская и Ленинградская области) коэффициент равен 1,2-1,3;
  • Дальний Восток и районы Крайнего Севера: для Новосибирска от 1,5; для Оймякона до 2,0.
  1. Площадь здания (10*10) равна 100 квадратных метров.
  2. Базовый показатель тепловой нагрузки 100/10=10 киловатт.
  3. Это значение умножается на региональный коэффициент, равный 1,3, в итоге получается 13 кВт тепловой мощности, которые требуются для поддержания комфортной температуры в доме.

Обратите внимание! Если использовать эту методику для определения тепловой нагрузки, то необходимо еще учесть запас мощности в 20 процентов, чтобы компенсировать погрешности и экстремальные холода.

Первый способ определения тепловой нагрузки имеет много погрешностей:

  • Разные строения имеют разную высоту потолков. Учитывая то, что обогревается не площадь, а объем, этот параметр очень важен.
  • Через двери и окна проходит больше тепла, чем через стены.
  • Нельзя сравнивать городскую квартиру с частным домом, где снизу, сверху и за стенами не квартиры, а улица.
  • Базовый показатель тепловой нагрузки равняется 40 ватт на 1 кубический метр объема помещения.
  • Каждая дверь, ведущая на улицу, добавляет к базовому показателю тепловой нагрузки 200 ватт, каждое окно – 100 ватт.
  • Угловые и торцевые квартиры многоквартирного дома имеют коэффициент 1,2-1,3, на который влияет толщина и материал стен. Частный дом обладает коэффициентом 1,5.
  • Региональные коэффициенты равны: для Центральных областей и Европейской части России – 0,1-0,15; для Северных регионов – 0,15-0,2; для Южных регионов – 0,07-0,09 кВт/кв.м.
  1. Объем здания 300 квадратных метров (10*10*3=300).
  2. Базовый показатель тепловой нагрузки 12000 ватт (300*40).
  3. С учетом восьми окон и двух дверей тепловая мощность равна 13200 ватт (12000 (8*100) (2*200)).
  4. Для частного дома тепловая нагрузка умножается на региональный коэффициент и получается 19800 ватт (13200*1,5).
  5. 19800*1,3=25740 ватт (с учетом регионального коэффициента для Северных регионов). Следовательно, для обогрева потребуется 28-киловаттный котел.

Не стоит обольщаться – второй способ расчета тепловой нагрузки также весьма несовершенен. В нем весьма условно учтено тепловое сопротивление потолка и стен; разность температур между наружным воздухом и воздухом внутри.

Стоит отметить, чтобы поддерживать внутри дома постоянную температуру необходимо такое количество тепловой энергии, которое будет равняться всем потерям через вентиляционную систему и ограждающие устройства. Однако, и в этом методе расчеты упрощены, так как невозможно систематизировать и измерить все факторы.

На теплопотери влияет материал стен – 20-30 процентов потери тепла. Через вентиляцию уходит 30-40 процентов, через крышу – 10-25 процентов, через окна – 15-25 процентов, через пол на грунте – 3-6 процентов.

Чтобы упростить расчеты тепловой нагрузки, подсчитываются тепловые потери через ограждающие устройства, а затем это значение просто умножается на 1,4. Дельта температур измеряется легко, но взять данные про термическое сопротивление можно только в справочниках. Ниже приведены некоторые популярные значения термического сопротивления:

  • Термическое сопротивление стены в три кирпича равно 0,592 м2*С/Вт.
  • Стены в 2,5 кирпича составляет 0, 502.
  • Стены в 2 кирпича равно 0,405.
  • Стены в один кирпич (толщина 25 см) равно 0,187.
  • Бревенчатого сруба, где диаметр бревна 25 см – 0,550.
  • Бревенчатого сруба, где диаметр бревна 20 сантиметров – 0,440.
  • Сруба, где толщина сруба 20 см – 0,806.
  • Сруба, где толщина 10 см – 0,353.
  • Каркасной стены, толщина которой 20 см, утепленной минеральной ватой – 0,703.
  • Стены из газобетона, толщина которой 20 см – 0,476.
  • Стены из газобетона, толщина которой 30 см – 0,709.
  • Штукатурки, толщина которой 3 см – 0,035.
  • Потолочного или чердачного перекрытия – 1,43.
  • Деревянного пола – 1,85.
  • Двойной деревянной двери – 0,21.
  1. Дельта температур в период пика морозов равна 50 градусов: внутри дома плюс 20 градусов, снаружи – минус 30 градусов.
  2. Потери тепла через один метр квадратный 50/1,85 (показатель термического сопротивления пола из дерева) равно приблизительно 27 ватт. Весь пол будет иметь 27*100=2700 ватт.
  3. Теплопотери через потолок составляют (50/1,43)*100 и равно приблизительно 3500 ватт.
  4. Площадь стен (10*3)*4 и равна 120 квадратных метров. К примеру, стены изготовлены из бруса с толщиной 20 см, термическое сопротивление = 0,806. Следовательно, теплопотери составят (50/0,806)*120=7444 ватта.
  5. Все полученные значения потерь тепла складываются, и получается значение 13644 ватт. Именно такое количество тепла будет терять дом через стены, пол и потолок.
  6. Далее полученное значение умножается на коэффициент 1,4 (потери на вентиляционную систему) и получается 19101 ватт. Следовательно, для отопления такого дома понадобится 20-киловаттный котел.

Как видно из расчетов, способы определения тепловой нагрузки обладают существенными погрешностями. К счастью, избыточный показатель мощности котла не навредит:

  • Работа газового котла на уменьшенной мощности осуществляется без падения коэффициента полезного действия, а работа конденсационных устройств при неполной нагрузке осуществляется в экономичном режиме.
  • То же относится и к соляровым котлам.
  • Показатель коэффициента полезного действия электрического нагревательного оборудования равен 100 процентам.

Обратите внимание! Работа твердотопливных котлов на мощности меньше номинального значения мощности противопоказана.

Расчет тепловой нагрузки на отопление является важным фактором, вычисления которого обязательно необходимо выполнять перед началом создания системы отопления. В случае подхода к процессу с умом и грамотного выполнения всех работ гарантируется безотказная работа отопления, а также существенно экономятся деньги на лишних затратах.

   при t = 1 ч           n = 1;t = 2 ч           n = 0,72;t = 3 ч           n = 0,58;t = 4 ч           n = 0,5;t = 5 ч           n = 0,45.

При размещении спускных устройств в нижней точке тепловой сети диаметр штуцера и запорной арматуры, м, должен определяться по формуле

, (4)

где — диаметры штуцеров и запорной арматуры, м, определяемые по формуле (1) отдельно для каждого, примыкающего к нижней точке участка трубопровода тепловой сети.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Условный проход штуцера и запорной арматуры для спуска водыиз секционируемых участков водяных тепловых сетейили конденсата из конденсатных сетей

Условный проход трубопровода, мм

До 65 включ.

80-125

150

200-250

300-400

500

600-700

800-900

1000-1400

Условный проход штуцера и запорной арматуры для спуска воды или конденсата, мм

25

40

50

80

100

150

200

250

300

Можно выделить следующие методы определения тепловой нагрузки:

  • Расчёт
    по площади помещения
    . Существует мнение, что строительство жилых домов обычно производится по проектам, которые уже учитывают климатические особенности конкретного региона и предполагают использование материалов, обеспечивающих необходимый тепловой баланс. Поэтому при устройстве системы отопления с достаточной долей точности можно использовать коэффициент удельной мощности, который не зависит от конкретных особенностей здания.

    Для Москвы и области этот коэффициент обычно берется равным 100–150 Вт/м 2 , а полная нагрузка вычисляется его умножением на общую площадь помещения.

  • Учет объема и температуры
    . Немного более сложный алгоритм позволяет принять во внимание высоту потолков, уровень комфорта в зоне отопления, а также, очень приблизительно, учесть особенности самого здания.

    Тепловая нагрузка вычисляется по формуле: Q = V*ΔT*K/860. Здесь V – объем (произведение длины, ширины и высоты помещения), ΔT – разница температур внутри и снаружи, К – коэффициент потерь энергии тепла.

    Именно с помощью коэффициента К в расчет и закладываются конструктивные особенности здания. Например, для сооружений из двойной кирпичной кладки с обычной кровлей значение К берется из диапазона 1,0–1,9, а для упрощенных деревянных конструкций оно может достигать 3,0–4,0.

  • Метод укрупненных показателей
    . Этот метод похож на предыдущий, но используется для определения тепловой нагрузки при устройстве системы отопления больших объектов, например, многоквартирных зданий.

Методы вычисления тепловых нагрузок

  • величина требуемого количество топлива;
  • производительность обогревательного узла;
  • эффективность уставленного типа топливных ресурсов.

С целью исключения громоздких вычислительных формул, специалисты жилищно-коммунальных предприятий разработали уникальную методику и программу, с помощью которой можно буквально за считанные минуты выполнить расчет тепловой нагрузки на отопление и прочих данных, необходимых при проектировке обогревательного блока.

К методике подобного рода, которую возможно использовать, применяя калькулятор расчета теплоэнергии на отопление здания, очень часто прибегают сотрудники кадастровых фирм для определения экономико-технологической эффективности всевозможных программ, направленных на энергосбережение. Кроме этого, с помощью подобных расчетно-вычислительных методик осуществляется внедрение в проекты нового функционального оборудования и запуск энергоэффектвных процессов.

Итак, для выполнения расчета тепловой нагрузки на отопление здания, специалисты прибегают к помощи следующей формулы:

  • a — коэффициент, которые показывает правки разницы температурного режима внешнего воздуха при определении эффективности функционирования отопительной системы;
  • t i ,t 0 — разница температур в помещении и на улице;
  • q 0 — удельная экспонента, которая определяется путем дополнительных вычислений;
  • K u.p — коэффициент инфильтрации, учитывающий всевозможные теплопотери, начиная от погодных условий и заканчивая отсутствием теплоизоляционного слоя;
  • V — объем сооружения, который нуждается в обогреве.

Формула очень примитивна: нужно лишь перемножить длину, ширину и высоту помещения. Однако, это вариант годится только для определения кубатуры сооружения, которое имеет квадратную или прямоугольную форму. В других случаях эта величина определяется несколько иным способом.

Если помещение представляет собой комнату неправильной формы, то задача несколько усложняется. В этом случае надо разбить площадь комнат на простые фигуры и определить кубатуру каждой из них, заблаговременно сделав все замеры. Остается только сложить полученные цифры. Вычисления следует проводить в одних и тех же единицах измерения, к примеру, в метрах.

В том случае, если сооружение, для которого делается укрупненный расчет тепловой нагрузки здания, оснащено чердаком, то кубатура определяется путем произведения показателя горизонтального сечения дома (речь идет о показателе, который берется от уровня напольной поверхности первого этажа) на его полную высоту, с учетом наивысшей точки утеплительного слоя чердака.

где — корень из суммарной кубатуры помещений в сооружении, а n — количество комнат в постройке.

Чтобы вычисление получилось максимально точным, нужно учитывать абсолютно все виды энергетических потерь. Так, к основным из них можно отнести:

  • через чердак и крышу, если не утеплить их должным образом, обогревательный узел теряет до 30% теплоэнергии;
  • при наличии в доме естественной вентиляции (дымоотвод, регулярное проветривание и т.п.) уходит до 25% теплоэнергии;
  • если стеновые перекрытия и напольная поверхность не утеплены, то сквозь них можно потерять до 15% энергии, столько же уходит через окна.

Учитывая возможные энергопотери, нужно либо исключить их, прибегнув к помощи теплоизоляционного материала, либо прибавить их величину во время определения объема тепла на отопление помещения.

Что же касается обустройства каменных домов, строительство которых уже завершено, необходимо учитывать более высокие теплопотери в начале отопительного периода. При этом надо брать в учет и срок окончания стройки:

  • с мая по июнь — 14%;
  • сентябрь — 25%;
  • с октября по апрель — 30%.

Следующий шаг — вычисление среднего показателя загрузки горячего водоснабжения в отопительный сезон. Для этого используется такая формула:

  • a — среднесуточная норма использованиягорячей воды (эта величина является нормированной и ее можно найти в таблице СНиП приложение 3);
  • N — численность жильцов, сотрудников, студентов или детей (если речь идет о дошкольном учреждении) в постройке;
  • t_c-величина температуры воды (измеряется по факту или берется из усредненных справочных данных);
  • T — временной промежуток, во время которого осуществляется подача горячей воды (если речь идет о почасовом водоснабжении);
  • Q_(t.n) — коэффициент теплопотерьв системе горячего водоснабжения.

Буквально несколько десятилетий тому назад это была нереальная задача. Сегодня же практически все современные нагревательные котлы промышленного и бытового назначения оснащаются регуляторами тепловых нагрузок (РТН). Благодаря таким приборам осуществляется поддержание мощности обогревательных агрегатов на заданном уровне, и исключаются скачки, а также перевалы во время их функционирования.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Это обуславливается фиксированным лимитом мощности оборудования, которые, вне зависимости о его функционирования, не изменяется. Особенно это касается промышленных предприятий.

Сделать своими силами проект и произвести вычисления загрузки отопительных узлов, обеспечивающие отопление, вентиляцию и метод кондиционирования в постройке, не так уж и сложно, главное — запастись терпением и необходимым багажом знаний.

  • Подбор мощности котла
    . Это самый важный фактор, определяющий эффективность системы отопления в целом. Производительность котла должна обеспечивать бесперебойную работу всех потребителей в любых условиях, в том числе и при наиболее низких температурах (в самую холодную пятидневку). Вместе с тем при избыточной мощности котла часть вырабатываемой энергии, а следовательно, и денег хозяев будет в буквальном смысле вылетать в трубу;
  • Согласование подключения к газовой сети
    . Для того чтобы получить разрешение на присоединение к газотранспортной магистрали, необходимо разработать ТУ на подключение. В заявке обязательно указывается планируемый годовой расход газа и оценка суммарной тепловой мощности всех потребителей;
  • Расчет
    периферийного оборудования
    . Тип и характеристики батарей, длина и сечение труб, производительность циркуляционного насоса и многие другие параметры также определяются в результате расчета тепловых нагрузок.
  • К 1 – учитывает тип окон. Для двухкамерных стеклопакетов его значение равно 1, для трехкамерных – 0,85, для обычного остекления – 1, 27;
  • К 2 – теплоизоляция стен. Может изменяться от 1 для пенобетона с улучшенной теплопроводностью до 1,5 для кладки в полтора кирпича или бетонных блоков;
  • К 3 – конфигурация помещения (соотношение площади окон и пола). Естественно, чем больше окон, тем больше тепловой энергии уходит на улицу. При размерах остекления в 20% от площади пола этот коэффициент равен единице, при увеличении доли окон до 50% он также возрастает до 1,5;
  • К 4 – минимальная уличная температура в течение всего сезона. Здесь логика также очевидна – чем холоднее на улице, тем большие коррективы необходимо вносить в расчет тепловых нагрузок. За единицу берется температура -20 °C, далее прибавляется или вычитается по 0,1 на каждые 5 °C;
  • К 5 – количество наружных стен. Для одной стены коэффициент равен 1, для двух и трех – 1,2, для четырех – 1,33;
  • К 6 – тип помещения над рассматриваемой комнатой. Если сверху жилой этаж – то 0,82, если теплый чердак – 0,91, для холодного чердака значение коэффициента равно 1,0;
  • К 7 – учитывает высоту потолков. Чаще всего это 1,0 для высоты 2,5 м или 1,05 — для 3 м.

Q i =q*S i *K 1 *K 2 *K 3 *K 4 *K 5 *K 6 *K 7 ,

где q =100 Вт/м 2 , а S i – площадь помещения. Из формулы видно, что каждый из указанных коэффициентов увеличивает расчетную величину теплопотерь, если его значение больше единицы, и уменьшает ее в противном случае.

Q=Σ Q i , i = 1…N,

где N – количество помещений в доме. Эту величину обычно увеличивают на 15–20% для создания запаса тепловой энергии на непредвиденные случаи: очень сильные морозы, нарушение теплоизоляции, разбитое окно и т. д.

  1. Подбор котла в зависимости от его мощности. Эффективность функционирования отопительной конструкции определяется правильностью выбора нагревательного агрегата. Котел должен иметь такую производительность, чтобы обеспечить обогрев всех помещений в соответствии с потребностями людей, проживающих в доме или квартире, даже в наиболее холодные зимние дни. Одновременно при наличии у прибора избыточной мощности часть вырабатываемой энергии не будет востребована, а значит, некоторая сумма денег потратится напрасно. 
  2. Необходимость согласовывать подключение к магистральному газопроводу. Для присоединения к газовой сети потребуется ТУ. Для этого подают заявку в соответствующую службу с указанием предполагаемого расхода газа на год и оценкой тепловой мощности в сумме для всех потребителей. 
  3. Выполнение расчетов периферийного оборудования.  необходим для определения длины трубопровода и сечения труб, производительности циркуляционного насоса, типа батарей и т.д. 
  • Тепловая мощность требуемая на полную компенсацию максимальных теплопотерь здания;
  • Мощность на обогрев помещения в которой расположена котельная установка.
  • Если котельная расположена в отдельно стоящем здании то к общей мощности котельной установки добавляется требуемая мощность на компенсацию теплопотерь в трубопроводах которые расположены между отапливаемым зданием и помещением котельной.
  • Если в функции котельной установки входит приготовление горячей воды то к общей требуемой мощности добавляется тепловая нагрузка требуемая на нагрев воды для системы ГВС. При этом, на сегодняшний день, при применении современных изоляционных материалов в строительстве домов иногда делает эту тепловую нагрузку преобладающей, по сравнению с тепловой нагрузкой требуемую на другие нужды.
  • Требуемая тепловая мощность на другие потребители (вентиляция, подогрев бассейна, подогрев наружных площадок и тд.)
Теплообменные приборы в системе Удельная емкость, м ч/Гкал (м ч/ГДж) при температурном перепаде, °С
95/70 110/70 130/70 140/70 150/70
Радиаторы чугунные высотой 1000 мм 31,0 (7,4) 28,2 (6,7) 24,2 (5,8) 23,2 (5,5) 21,6 (5,2)
То же, высотой 500 мм 19,5 (4,7) 17,6 (4,2) 15,1 (3,6) 14,6 (3,5) 13,3 (3,2)
Радиаторы стальные панельные высотой 500 мм 11,7 (2,8) 10,6 (2,5) 9,1 (2,2) 8,8 (2,1) 8,0 (1,9)
То же, высотой 350 мм 10,0 (2,4) 9,0 (2,1) 7,8 (1,9) 7,5 (1,8) 6,8 (1,6)
Радиаторы стальные листотрубные и конвекторы 5,6 (1,3) 5,0 (1,2) 4,3 (1,1) 4,1 (1,0) 3,7 (0,9)
Трубы чугунные ребристые 14,2 (3,4) 12,5 (3,0) 10,8 (2,6) 10,4 (2,5) 9,2 (2,2)
Регистры из стальных труб 37,0 (8,9) 32,0 (7,6) 27,0 (6,5) 26,0 (6,2) 24,0 (5,7)
Калориферные отопительно-вентиляционные агрегаты 8,5 (2,0) 7,5 (1,8) 6,5 (1,6) 6,0 (1,4) 5,5 (1,3)
  • площадь пола 152 м2
  • площадь крыши 180 м2 (учитывая высоту чердака 1.3 метра и ширину прогона — 4 метра)
  • площадь окон 3*1.47*1.42 2.08*1.42=9.22 м2
  • площадь дверей будет равна 2*0.9 2*2*1.4=7.4 м2
  1. Сезонные нагрузки. имеющие следующие особенности:
  • Площадь помещения и высота потолка;
  • Расположение внутри дома. Угловыми и торцевыми помещениями теряется больше тепла, чем помещениями, расположенными в середине здания;
  • Удаленность от источника тепла;
  • Желаемая температура в комнатах.

Общие требования

Средняя за

На одного человека, Вт, проживающего в здании

отопительный период норма расхода воды при температуре 55°С на горячее водоснабжение в сутки на 1 чел., проживающего в здании с горячим водоснабжением,л

с горячим водоснабжением

с горячим водоснабжением с учетом потребления в общественных зданиях

без горячего водоснабжения с учетом потребления в общественных зданиях

85

247

320

73

90

259

332

73

105

305

376

73

115

334

407

73

Способ прокладки

Температура теплоносителя, °С, не более

Виды покрытий

Общая толщина покрытия, мм

Нормативные документы, ГОСТы или технические условия на материалы

1. Надземный, в тоннелях, по стенам снаружи зданий, внутри зданий, в

Независимо от температуры теплоносителя

Масляно-битумные в два слоя по грунту ГФ-021 (в качестве консервационного покрытия)

0,15-0,2

ОСТ
6-10-426-79
ГОСТ
25129-82

технических подпольях (для воды и пара)

300

Металлизационное алюминиевое

0,25-0,3

ГОСТ
7871-75

2. Подземный в непроходных

300

Стеклоэмалевые марок:

ТУ ВНИИСТ

каналах (для воды и пара)

105Т в три слоя по одному слою грунта 117

0,5-0,6

64/64 в три слоя по грунтовочному подслою из смеси грунтов 70% № 2015 и 30% № 3132

0,5-0,6

13-111 в три слоя по одному слою грунта 117

0,5-0,6

596 в один слой по грунтовочному слою из эмали 25М

0,5

180

Органосиликатные (типа ОС-51-03) в три слоя

с термообработкой при температуре 200°С или в четыре слоя с отвердителем естественной сушки

0,25-0,3
0,45

ТУ 84-725-83

150

Изол в два слоя по холодной изольной мастике марки МРБ-Х-Т15

5-6

ГОСТ 10296-79
ТУ 21-27-37-74 МПСМ

Эпоксидные — эмаль ЭП-56 в три слоя по шпатлевке ЭП-0010 в два слоя с последующей термической обработкой при температуре 60°С

0,35-0,4

ГОСТ 10277-90
ТУ 6-10-1243-72

Металлизационное алюминиевое с дополнительной защитой

0,25-0,3

ГОСТ 7871-75

3. Бесканальный (для воды и пара)

300

Стеклоэмалевые — по п. 2 приложения

180
150

Защитные — по п. 2 приложения, кроме изола по изольной мастике

Примечания: 1. Если заводы-изготовители выпускают покрытия с лучшими технико-экономическими показателями, удовлетворяющими требованиям работы в тепловых сетях, то эти покрытия должны применяться взамен указанных в данном приложении.

2. При применении теплоизоляционных материалов или конструкций, исключающих возможность коррозии поверхности труб, защитное покрытие от коррозии предусматривать не требуется.

3. Металлизационное алюминиевое покрытие следует применять для сред с рН от 4,5 до 9,5.

Один примерный

  • q – удельная тепловая характеристика здания (чаще всего определяется по самому холодному периоду),
  • a – поправочный коэффициент (зависит от региона и берется из готовых таблиц),
  • VH – объем, рассчитанный по внешним плоскостям.

Q = 100 Вт/м 2 × 25 м 2 × 0,85 × 1 × 0,8(12%) × 1,1 × 1,2 × 1 × 1,05.

Результат, 2 356.20, делим на 150. В итоге получается, что в комнате с указанными параметрами нужно установить 16 секций.

Расчеты энергии

В первом случае перед тем, как приобрести котел того или иного вида, необходимо произвести определенный тепловой расчет, исходя из которого можно будет подобрать котел, который будет работать наиболее эффективно, и вы сможете получить бесперебойное горячее водоснабжение и хороший обогрев всего сооружения целиком.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Схема организации системы отопления двухэтажного частного дома.

Далеко не каждый котел сможет подойти, а это значит, что необходимо приобретать котел именно такой мощности, который будет работать даже при самых максимальных нагрузках, и при этом срок эксплуатации подобного оборудования не сократится

Для того чтобы добиться необходимых результатов при выборе, необходимо обращать пристальное внимание на этот аспект. Примерно то же касается и выбора оптимального оборудования для отопления помещения в целом

Правильный расчет тепловой энергии не только позволит приобрести те приборы отопления, которые прослужат долго, но и даст возможность немного сэкономить на покупке, а значит, затраты на отопление помещения тоже могут снизиться.

Что касается получения ТУ и согласования на газификацию объекта, то расчет энергии в данном случае является основополагающим фактором. Подобного рода разрешения необходимо получать тогда, когда в качестве топлива предполагается использование природного газа под котел. Чтобы получить документацию такого рода, нужно предоставить показатели годового расхода топлива и сумму мощности отопительных источников (Гкал/час).

Разумеется, что получить такую информацию можно только исходя из проведенного расчета тепловой энергии, а затем можно будет приобрести отопительный прибор, который помимо всего прочего сведет к минимуму затраты на отопление. Использование природного газа в качестве топлива под котел сегодня является одним из наиболее популярных способов на отопление помещения.

де, ч.

. (6а)

Рис.1а

Рис.1б

ТС — тепловая сеть

— теплосчетчик

— водосчетчик

. (7)

, (8)

, (9)

, (10)

. (11)

Рис.3а

Рис.3б

. (9а)

. (9б)

, (12)

, (13)

. (13а)

, (14)

, (13б)

, (15)

, (16)

, (17)

, (18)

где — средняя часовая нагрузка горячего водоснабжения рассматриваемого абонента по договору теплоснабжения (расчетный водоразбор), т/ч.

Методические рекомендации по определению средних часовых нагрузок горячего водоснабжения абонентов приведены в приложении 1.

Точный расчет тепловой нагрузки

Учитывая описанные факторы, усредненный расчет проводится по следующей схеме. Если на 1 кв. м требуется 100 Вт теплового потока, то помещение в 20 кв. м должно получать 2 000 Вт. Радиатор (популярный биметаллический или алюминиевый) из восьми секций выделяет около 150 Вт. Делим 2 000 на 150, получаем 13 секций. Но это довольно укрупненный расчет тепловой нагрузки.

Точный выглядит немного устрашающе. На самом деле ничего сложного. Вот формула:

  • q1 – тип остекления (обычное =1.27, двойное = 1.0, тройное = 0.85);
  • q2 – стеновая изоляция (слабая, или отсутствующая = 1.27, стена выложенная в 2 кирпича = 1.0, современна, высокая = 0.85);
  • q3 – соотношение суммарной площади оконных проемов к площади пола (40% = 1.2, 30% = 1.1, 20% — 0.9, 10% = 0.8);
  • q4 – уличная температура (берется минимальное значение: -35 о С = 1.5, -25 о С = 1.3, -20 о С = 1.1, -15 о С = 0.9, -10 о С = 0.7);
  • q5 – число наружных стен в комнате (все четыре = 1.4, три = 1.3, угловая комната = 1.2, одна = 1.2);
  • q6 – тип расчетного помещения над расчетной комнатой (холодное чердачное = 1.0, теплое чердачное = 0.9, жилое отапливаемое помещение = 0.8);
  • q7 – высота потолков (4.5 м = 1.2, 4.0 м = 1.15, 3.5 м = 1.1, 3.0 м = 1.05, 2.5 м = 1.3).

По любому из описанных методов можно провести расчет тепловой нагрузки многоквартирного дома.

Если необходим расчет в гигакалориях

В случае отсутствия счетчика тепловой энергии на открытом отопительном контуре расчет тепловой нагрузки на отопление здания рассчитывают по формуле Q = V * (Т1 — Т2 ) / 1000, где:

  • V – количество воды, потребляемой системой отопления, исчисляется тоннами или м 3 ,
  • Т1 – число, показывающее температуру горячей воды, измеряется в о С и для вычислений берется температура, соответствующая определенному давлению в системе. Показатель этот имеет свое название – энтальпия. Если практическим путем снять температурные показатели нет возможности, прибегают к усредненному показателю. Он находится в пределах 60-65 о С.
  • Т2 – температура холодной воды. Ее измерить в системе довольно трудно, поэтому разработаны постоянные показатели, зависящие от температурного режима на улице. К примеру, в одном из регионов, в холодное время года этот показатель принимается равным 5, летом – 15.
  • 1 000 – коэффициент для получения результата сразу в гигакалориях.

В случае закрытого контура тепловая нагрузка (гкал/час) рассчитывается иным образом:

  • α – коэффициент, призванный корректировать климатические условия. Берется в расчет, если уличная температура отличается от -30 о С;
  • V – объем строения по наружным замерам;
  • qо – удельный отопительный показатель строения при заданной tн.р = -30 о С, измеряется в ккал/м 3 *С;
  • tв – расчетная внутренняя температура в здании;
  • tн.р – расчетная уличная температура для составления проекта системы отопления;
  • Kн.р – коэффициент инфильтрации. Обусловлен соотношением тепловых потерь расчетного здания с инфильтрацией и теплопередачей через внешние конструктивные элементы при уличной температуре, которая задана в рамках составляемого проекта.

Расчет тепловой нагрузки получается несколько укрупненным, но именно эта формула дается в технической литературе.

Обследование тепловизором

Первый этап работ проходит внутри помещения

Прибор двигают постепенно от дверей к окнам, уделяя особое внимание углам и прочим стыкам.

Тепловой расчт системы отопления правила расчета тепловой нагрузки

Второй этап – обследование тепловизором внешних стен строения. Все так же тщательно исследуются стыки, особенно соединение с кровлей.

Третий этап – обработка данных. Сначала это делает прибор, затем показания переносятся в компьютер, где соответствующие программы заканчивают обработку и выдают результат.

Если обследование проводила лицензированная организация, то она по итогу работ выдаст отчет с обязательными рекомендациями. Если работы велись лично, то полагаться нужно на свои знания и, возможно, помощь интернета.

Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.

Никогда не делайте этого в церкви! Если вы не уверены относительно того, правильно ведете себя в церкви или нет, то, вероятно, поступаете все же не так, как положено. Вот список ужасных.

20 фото кошек, сделанных в правильный момент Кошки — удивительные создания, и об этом, пожалуй, знает каждый. А еще они невероятно фотогеничны и всегда умеют оказаться в правильное время в правил.

Топ-10 разорившихся звезд Оказывается, иногда даже самая громкая слава заканчивается провалом, как в случае с этими знаменитостями.

Как выглядеть моложе: лучшие стрижки для тех, кому за 30, 40, 50, 60 Девушки в 20 лет не волнуются о форме и длине прически. Кажется, молодость создана для экспериментов над внешностью и дерзких локонов. Однако уже посл.

Непростительные ошибки в фильмах, которых вы, вероятно, никогда не замечали Наверное, найдется очень мало людей, которые бы не любили смотреть фильмы. Однако даже в лучшем кино встречаются ошибки, которые могут заметить зрител.

Оцените статью
MALIVICE.RU