Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Содержание
  1. Пенофол
  2. Подробная таблица теплопроводности строительных материалов
  3. Сравнение паропроницаемости утеплителей
  4. Насыпные
  5. Блочные
  6. Плитные
  7. Рулонные
  8. Пенообразные
  9. Таблица теплопроводности материалов
  10. Определение теплопроводности в зависимости от влажности
  11. Как определить коэффициенты теплопроводности строительных материалов таблица
  12. Определение коэффициента теплопроводности увлажняющих связующих смесей
  13. Пенообразные
  14. Выводы
  15. Расчет толщины стены по теплопроводности вручную по формулам или калькулятором
  16. Условия эксплуатации
  17. Как правильно выбрать утеплитель
  18. Зачем нужна теплоизоляция
  19. Как определить коэффициенты теплопроводности строительных материалов таблица
  20. Понятие теплопроводности
  21. Принцип плоского источника тепла
  22. Принцип нестационарного плоского измерительного оборудования
  23. Понятие теплопроводности на практике
  24. Эффективность многослойных конструкций
  25. Факторы, влияющие на величину теплопроводности
  26. Теплопроводность материалов: параметры
  27. Свойства строительных материалов
  28. Пористость строительных материалов
  29. Долговечность строительных материалов
  30. Бетоны

Пенофол

Этот утеплитель производится в виде рулонов, толщина которых 2-10 мм. В основе материала положен вспененный полиэтилен. В продаже можно встретить теплоизолятор, на одной стороне которого имеется фольга для образования отражающего фона. Толщина материала в несколько раз меньше представленных ранее материалов, но при этом это совершенно не влияет на теплопроводность. Он способен отражать до 97% тепла. Вспененные полиэтилен может похвастаться продолжительным сроком службы и экологической чистотой.

На фото- утеплитель Пенофол

Изолон совершенно легкий, тонкий и удобный в плане установки. Применяют рулонный теплоизолятор при обустройстве влажных комнат, куда можно отнести подвал, балкон. Кроме этого, применения утеплителя позволит сохранить полезную площадь помещения, если устанавливать его внутри дома.

А вот какова теплопроводность керамического кирпича и где такой строительный материал используется, поможет понять информация из статьи.

Так же будет интересно узнать о том, каковы характеристики и теплопроводность газобетон.

Так же будет интересно узнать о том, какова теплопроводность керамзита.

Какова теплопроводность подложки под ламинат и как правильно сделать просчёты, рассказывается в данной

Таблица 1 – Показатели проводимости тепла популярных материалов

Материал Теплопроводность, Вт/(м*С) Плотность, кг/м3 Паропроницаемость, мг/ (м*ч*Па)
Пенополиуретан 0,023 32 0,0-0,05
0,029 40
0,035 60
0,041 80
Пенополистирол 0,038 40 0,013-0,05
0,041 100
0,05 150
Экструдированный пенополистирол 0,031 33 0,013
Минеральная вата 0,048 50 0,49-0,6
0,056 100
0,07 200
Пенопласт ПВХ 0,052 125 0,023

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Теплопроводность – это один из главных критериев при выборе теплоизоляционного материала. Если вести установку утеплителя с низким коэффициентом теплопроводности, то это позволит на дольше сохранить тепло в доме, создавая тем самых комфортные условия для проживания.

Подробная таблица теплопроводности строительных материалов

Необходимые коэффициенты для самых различных материалов

Чтобы определить величину теплопроводности используются специальные ГОСТы. Значение данного показателя отличается в зависимости от вида бетона. Если материал имеет показатель 1,75, то пористый состав обладает значением 1,4. Если раствор выполнен с применением каменного щебня, то его значение 1,3.

Технические характеристики утеплителей для бетонных полов

О значении теплопроводности можно судить по сравнительным характеристикам

Потери через потолочные конструкции значительны для проживающих на последних этажах. К слабым участкам относится пространство между перекрытиями и стеной. Подобные участки считаются мостиками холода. Если над квартирой присутствует технический этаж, то при этом потери тепловой энергии меньше.

Выполняя утепление потолка на веранде или террасе, можно использовать более легкие стройматериалы

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Утепление потолочного перекрытия на верхнем этаже производится снаружи. Также потолок можно утеплить внутри квартиры. Для этого применяется пенополистирол или теплоизоляционные плиты.

При утеплении потолка, стоит подобрать материал для пароизоляции и для гидроизоляции

Прежде чем утеплять любые поверхности, стоит узнать теплопроводность строительных материалов, таблица СНиПа поможет в этом. Утеплять напольное покрытие не так сложно как другие поверхности. В качестве утепляющих материалов применяются такие материалы как керамзит, стекловата ил пенополистирол.

Создание теплого пола требует особых знаний

Чтобы качественно утеплить квартиру на последних этажах, можно полноценно использовать возможности центрального отопления. При этом важно повысить отдачу тепло от радиаторов. Для этого стоит воспользоваться следующими советами:

  • если какая-то часть батарей холодная, то требуется спустить воздух. При этом открывается специальный клапан;
  • чтобы тепло проникало внутрь дома, на не обогревало стены, рекомендуется установить защитный экран с покрытием из фольги;
  • для свободной циркуляции подогретого воздуха не стоит радиаторы загромождать мебелью или шторами;
  • если снять декоративный экран, то теплоотдача увеличиться на 25 %.

Выбор качественных радиаторов позволяет лучше сберечь тепло в помещении

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Тепловые потери через входные двери могут составлять до 10 %. При этом значительное количество тепла тратится на воздушные массы, которые поступают снаружи. Для устранения сквозняков надо переустановить изношенные уплотнители и щели, которые могут появиться между стеной и коробом. В данном случае дверное полотно можно обить, а щели заполнить с помощью монтажной пены.

Выбор утеплителя зависит от материала самой двери

Одним из основных источников теплопотерь являются окна. Если рамы старые, то появляются сквозняки. Через оконные проемы теряется около 35% тепловой энергии. Для качественного утепления применяются двухкамерные стеклопакеты. К другим способам относится утепление щелей монтажной пеной, оклейка мест стыков с рамой специальным уплотнителем и нанесение силиконового герметика. Правильное и комплексное утепление является гарантией комфортного и теплого дома, в котором не появиться плесень, сквозняки и холодный пол.

Теоретически, да и практически тоже, строительными материалами, как правило, создаются две поверхности – наружная и внутренняя. С точки зрения физики, теплая область всегда стремится к холодной области.

Применительно к стройматериалу, тепло будет стремиться от одной поверхности (более теплой) к другой поверхности (менее теплой). Вот, собственно, способность материала относительно такого перехода и называется – коэффициентом теплопроводности или в аббревиатуре – КТП.

Что такое коэффициент теплопроводности

Схема, поясняющая эффект теплопроводности: 1 – тепловая энергия; 2 – коэффициент теплопроводности; 3 – температура первой поверхности; 4 – температура второй поверхности; 5 – толщина стройматериала

Характеристика КТП обычно строится на основе испытаний, когда берётся экспериментальный экземпляр размерами 100х100 см и к нему применяется тепловое воздействие с учётом разницы температур двух поверхностей в 1 градус. Время воздействия 1 час.

Соответственно, измеряется теплопроводность в Ваттах на метр на градус (Вт/м°C). Коэффициент обозначается греческим символом λ.

По умолчанию, теплопроводность различных материалов для строительства со значением меньше 0,175 Вт/м°C, приравнивает эти материалы к разряду изоляционных.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Современным производством освоены технологии изготовления стройматериалов, уровень КТП которых составляет меньше 0,05 Вт/м°C. Благодаря таким изделиям, удается достичь выраженного экономического эффекта в плане потребления энергетических ресурсов.

Каждый отдельно взятый стройматериал имеет определенное строение и обладает своеобразным физическим состоянием.

Основой этого являются:

  • размерность кристаллов структуры;
  • фазовое состояние вещества;
  • степень кристаллизации;
  • анизотропия теплопроводности кристаллов;
  • объем пористости и структуры;
  • направление теплового потока.

Все это – факторы влияния. Определенное влияние на уровень КТП также оказывает химический состав и примеси. Количество примесей, как показала практика, оказывает особенно выразительное влияние на уровень теплопроводности кристаллических компонентов.

Изоляционный стройматериал

Изоляционные стройматериалы – класс продуктов под строительство, созданных с учётом свойств КТП, приближенных к оптимальным свойствам. Однако достичь идеальной теплопроводности при сохранении других качеств, крайне сложно

В свою очередь влияние на КТП оказывают условия эксплуатации стройматериала – температура, давление, уровень влажности и др.

Согласно исследованиям, минимальным значением теплопроводности (около 0,023 Вт/м°C) обладает сухой воздух.

С точки зрения применения сухого воздуха в структуре строительного материала, необходима конструкция, где сухой воздух пребывает внутри замкнутых многочисленных пространств небольшого объёма. Конструктивно такая конфигурация представлена в образе многочисленных пор внутри структуры.

Отсюда логичный вывод: малым уровнем КТП должен обладать стройматериал, внутренняя структура которого представляет собой пористое образование.

Причём, в зависимости от максимально допустимой пористости материала, значение теплопроводности приближается к значению КТП сухого воздуха.

Пористая структура стройматериала

Созданию строительного материала с минимальной теплопроводностью способствует пористая структура. Чем больше содержится пор разного объема в структуре материала, тем лучший КТП допустимо получить

В современном производстве применяются несколько технологий для получения пористости строительного материала.

В частности, используются технологии:

  • пенообразования;
  • газообразования;
  • водозатворения;
  • вспучивания;
  • внедрения добавок;
  • создания волоконных каркасов.

Следует отметить: коэффициент теплопроводности напрямую связан с такими свойствами, как плотность, теплоемкость, температурная проводимость.

λ = Q / S *(T1-T2)*t,

  • Q – количество тепла;
  • S – толщина материала;
  • T1, T2 – температура с двух сторон материала;
  • t – время.

λ = 1,16 √ 0,0196 0,22d2 – 0,16,

Где: d – значение плотности. Это формула В.П. Некрасова, демонстрирующая влияние плотности конкретного материала на значение его КТП.

Опять же судя по примерам использования стройматериалов на практике, выясняется негативное влияние влаги на КТП стройматериала. Замечено – чем большему увлажнению подвергается стройматериал, тем более высоким становится значение КТП.

Влажный стройматериал

Различными способами стремятся защитить от воздействия влаги материал, используемый в строительстве. Эта мера вполне оправдана, учитывая повышение коэффициента для мокрого стройматериала

Обосновать такой момент несложно. Воздействие влаги на структуру строительного материала сопровождается увлажнением воздуха в порах и частичным замещением воздушной среды.

Учитывая, что параметр коэффициента теплопроводности для воды составляет 0,58 Вт/м°C, становится понятным существенное повышение КТП материала.

Следует также отметить более негативный эффект, когда вода, попадающая в пористую структуру, дополнительно замораживается – превращается в лёд.

Соответственно, несложно просчитать ещё большее увеличение теплопроводности, принимая во внимание параметры КТП льда, равного значению 2,3 Вт/м°C. Прирост примерно в четыре раза к параметру теплопроводности воды.

Зимнее строительство

Одной из причин отказа от зимнего строительства в пользу стройки летом следует считать именно фактор возможного подмораживания некоторых видов стройматериалов и как следствие – повышения теплопроводности

Отсюда становятся очевидными строительные требования относительно защиты изоляционных стройматериалов от попадания влаги. Ведь уровень теплопроводности растёт в прямой пропорциональности от количественной влажности.

Не менее значимым видится и другой момент – обратный, когда структура строительного материала подвергается существенному нагреву. Чрезмерно высокая температура также провоцирует рост теплопроводности.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Происходит такое по причине повышения кинематической энергии молекул, составляющих структурную основу стройматериала.

Правда, существует класс материалов, структура которых, напротив, приобретает лучшие свойства теплопроводности в режиме сильного нагрева. Одним из таких материалов является металл.

Нагрев металла и теплопроводность

Если под сильным нагревом большая часть широко распространенных стройматериалов изменяет теплопроводность в сторону увеличения, сильный нагрев металла приводит к обратному эффекту – КТП металла понижается

Используются разные методики в этом направлении, но по факту все технологии измерения объединены двумя группами методов:

  1. Режим стационарных измерений.
  2. Режим нестационарных измерений.

Стационарная методика подразумевает работу с параметрами, неизменными с течением времени или изменяющимися в незначительной степени. Эта технология, судя по практическим применениям, позволяет рассчитывать на более точные результаты КТП.

Сравнение паропроницаемости утеплителей

Все утеплители можно классифицировать по нескольким показателям. По внешним признакам их можно подразделить на сыпучие, блочные, плитные и листовые, рулонные и пенообразные. По методу укладки – насыпные, наклеиваемые и монолитной укладки. По способу производства – неорганические (природного происхождения) и органические (полимеры).

Насыпные

Насыпные утеплители — это, как правило, вспученные природные материалы (керамзит, перлит, вермикулит) или отходы доменного производства (шлак).

Блочные

Блочные материалы как керамзитовые, газосиликатные, пеноблоки, блоки из пеностекла также используют в качестве теплоизоляции.

Плитные

Плитные утеплители могут быть как органического (пенопласт, пенополистирол экструдированный), так и неорганического происхождения (на основе минеральной, стекло, каменной или базальтовой ваты, а также льна). В качестве листового утеплителя используют плиты ДВП, ОСП, талькохлорит.

penopolistirolnye-utepliteli

Рулонные

Что такое коэффициент теплопроводности

Рулонные утеплители в основном из ваты разного происхождения (неорганического) или органического (пенополиуретановые маты, вспененные фольгированные материалы).

Пенообразные

Пенообразные утеплители распыляют при помощи специального оборудования на подготовленное основание. На сегодняшний день из этой группы предлагают эко (вискоза), пенополистирол и пенополиуретан.

По методу укладки – насыпные утеплители из сыпучих песков или гравия, наклеиваемые – плитные, рулонные или листовые материалы, монолитные – «теплые» бетоны (керамзитобетон, пенобетон, газобетон, полистиролбетон) и пенообразные утеплители.

Утепление с внутренней стороны дома не так эффективно с точки зрения сбережения тепла, кроме того, сокращается площадь жилого помещения. Тем не менее, стены некоторых домов и квартир невозможно утеплить снаружи. Для внутреннего утепления стен возможно применение таких утеплителей, как минвата, пенополистирол. Их мы описывали выше.

Конечно, монтажные работы внутреннего утепления стен будут отличаться от утепления фасада, но характеристики используемых материалов останутся те же. Для внутреннего утепления стен не подойдут минераловатные плиты, пеностекло, так как они паронепроницаемы. Их использование с внутренней стороны стен негативно скажется не только на комфортности пребывания в помещении, но и на состоянии стен. Помимо мниваты и пенополистирола, для внутреннего утепления стен используются:

  • обои или пластины из пробкового утеплителя. Часто они имеют восковую пропитку, что делает их влагоустойчивыми и позволяет использовать, например, в ванной комнате;
  • обои из пенополистирола;
  • теплоизоляционная пенополистироловая штукатурка;
  • пенополиэтилен (полифан) — это своеобразный обойный утеплитель, располагающийся непосредственно под обоями, имеющий бумажное или фольгированное покрытие, которое отражает тепло от радиаторов отопления.

Таким образом, проведя сравнение существующих утеплителей для стен, мы установили, что каждый из них имеет как достоинства, так и недостатки. Но большинство этих недостатков можно свести к минимуму или вовсе исключить при правильном подходе к выбору утеплителя и монтажным работам. Правильный выбор можете сделать только вы, исходя из ваших потребностей и возможностей.

Высокая паропроницаемость=отсутствие конденсата.

Паропроницаемость – это способность материала пропускать воздух, а вместе с ним и пар. То есть теплоизоляция может дышать. На этой характеристике утеплителей для дома последнее время производители акцентируют много внимания. На самом деле высокая паропроницаемость нужна только при утеплении деревянного дома. Во всех остальных случаях данный критерий не является категорически важным.

Наименование материала Паропроницаемость, мг/м*ч*Па
Минвата 0,49-0,6
Пенопласт 0,03
ППУ 0,02
Пеноизол 0,21-0,24
Эковата 0,3

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Сравнение утеплителей для стен показало, что самой высокой степенью паропроницаемости обладают натуральные материалы, в то время как у полимерных утеплителей коэффициент крайне низок. Это свидетельствует о том, что такие материалы как ППУ и пенопласт обладают способностью задерживать пар, то есть выполняют функцию пароизоляции.

Пеноизол – это тоже своего рода полимер, который изготавливается из смол. Его отличие от ППУ и пенопласта заключается в структуре ячеек, которые открытие. Иными словами, это материал с открытоячеистой структурой. Способность теплоизоляции пропускать пар тесно связан со следующей характеристикой – поглощение влаги.

На сегодняшний день газовое автономное отопление загородного дома — это самый дешевый вариант обогрева жилья.

И напротив, автономное отопление частного дома электричеством самое дорогое. Подробности .

Теплопроводность подразумевает под собой способность материала передавать теплоту. Это свойство характеризуется коэффициентом теплопроводности, на основе которого принимают необходимую толщину утеплителя. Теплоизоляционный материал с низким коэффициентом теплопроводности является лучшим выбором.

Также теплопроводность тесно связана с понятиями плотности и толщины утеплителя, поэтому при выборе необходимо обращать внимание и на эти факторы. Теплопроводность одного и того же материала может изменяться в зависимости от плотности.

Под плотностью понимают массу одного кубического метра теплоизоляционного материала. По плотности материалы подразделяются на: особо лёгкие, лёгкие, средние, плотные (жёсткие). К легким относятся пористые материалы, подходящие для утепления стен, перегородок, перекрытий. Плотные утеплители лучше подходят для утепления снаружи.

Чем меньше плотность утеплителя, тем меньше вес, а теплопроводность выше. Это является показателем качества утепления. А небольшой вес способствует удобству монтажа и укладки. В ходе опытных исследований установлено, что утеплитель, имеющий плотность от 8 до 35 кг/м³ лучше всего удерживает тепло и  подходят для утепления вертикальных конструкций внутри помещений.

А как зависит теплопроводность от толщины? Существует ошибочное мнение, что утеплитель большой толщины будет лучше удерживать тепло внутри помещения. Это приводит к неоправданным расходам. Слишком большая толщина утеплителя может привести к нарушению естественной вентиляции и в помещении будет слишком душно.

А недостаточная толщина утеплителя приводит к тому, что холод будет проникать через толщу стены и на плоскости стены образуется конденсат, стена будет неотвратимо отсыревать, появится плесень и грибок.

Толщину утеплителя необходимо определять на основании теплотехнического расчета с учетом климатических особенностей территории, материала стены и её минимально допустимого значения сопротивления теплопередачи.

В случае игнорирования расчета может появиться ряд проблем, решение которых потребует больших дополнительных затрат!

В зависимости от конструктивных особенностей конструкции, которую необходимо утеплить, подбирается вид утеплителя. Так, например, если стена возведена из красного кирпича в два ряда, то для полноценной изоляции подойдёт пенопласт в 5 см толщиной.

Благодаря широкому ассортименту плотности пенопластовых листов ими можно отлично произвести тепловую изоляцию стен из ОСБ и оштукатурить сверху, что также увеличит эффективность работы утеплителя.
Классификация теплоизоляции

По способу передачи тепла теплоизоляционные материалы разделяются на два вида:

  • Утеплитель который поглощает любое воздействие холода, жары, химического воздействия и т.д.;
  • Утеплитель, умеющий отражать все виды воздействия на него;

По значению коэффициентов теплопроводности материала, из которого изготовлен утеплитель его различают по классам:

  • А класс. Такой утеплитель имеет наименьшую тепловую проводимость, максимальное значение которой 0,06 Вт (м*С);
  • Б класс. Обладает средним показателем СИ параметра и достигает 0,115 Вт (м*С);
  • В класс. Наделён высокой теплопроводностью и демонстрирует показатель в 0,175 Вт (м*С);

Таблица теплопроводности материалов

Чтобы в доме было проще сохранять тепло зимой и прохладу летом, теплопроводность стен, пола и кровли должна быть не менее определенной цифры, которая рассчитывается для каждого региона. Состав «пирога» стен, пола и потолка, толщина материалов берутся с таким учетом чтобы суммарная цифра была не меньше  (а лучше — хоть немного больше) рекомендованной для вашего региона.

Коэффициент теплопередачи материалов современных строительных материалов для ограждающих конструкций

При выборе материалов надо учесть, что некоторые из них (не все) в условиях повышенной влажности проводят тепло гораздо лучше. Если при эксплуатации возможно возникновение такой ситуации на продолжительный срок, в расчетах используют теплопроводность для этого состояния. Коэффициенты теплопроводности основных материалов, которые используются для утепления, приведены в таблице.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Наименование материала /Коэффициент теплопроводности Вт/(м·°C)

В сухом состоянии При нормальной влажности При повышенной влажности
Войлок шерстяной 0,036-0,041 0,038-0,044 0,044-0,050
Каменная минеральная вата 25-50 кг/м3 0,036 0,042 0,,045
Каменная минеральная вата 40-60 кг/м3 0,035 0,041 0,044
Каменная минеральная вата 80-125 кг/м3 0,036 0,042 0,045
Каменная минеральная вата 140-175 кг/м3 0,037 0,043 0,0456
Каменная минеральная вата 180 кг/м3 0,038 0,045 0,048
Стекловата 15 кг/м3 0,046 0,049 0,055
Стекловата 17 кг/м3 0,044 0,047 0,053
Стекловата 20 кг/м3 0,04 0,043 0,048
Стекловата 30 кг/м3 0,04 0,042 0,046
Стекловата 35 кг/м3 0,039 0,041 0,046
Стекловата 45 кг/м3 0,039 0,041 0,045
Стекловата 60 кг/м3 0,038 0,040 0,045
Стекловата 75 кг/м3 0,04 0,042 0,047
Стекловата 85 кг/м3 0,044 0,046 0,050
Пенополистирол (пенопласт, ППС) 0,036-0,041 0,038-0,044 0,044-0,050
Экструдированный пенополистирол (ЭППС, XPS) 0,029 0,030 0,031
Пенобетон, газобетон на цементном растворе, 600 кг/м3 0,14 0,22 0,26
Пенобетон, газобетон на цементном растворе, 400 кг/м3 0,11 0,14 0,15
Пенобетон, газобетон на известковом растворе, 600 кг/м3 0,15 0,28 0,34
Пенобетон, газобетон на известковом растворе, 400 кг/м3 0,13 0,22 0,28
Пеностекло, крошка, 100 — 150 кг/м3 0,043-0,06
Пеностекло, крошка, 151 — 200 кг/м3 0,06-0,063
Пеностекло, крошка, 201 — 250 кг/м3 0,066-0,073
Пеностекло, крошка, 251 — 400 кг/м3 0,085-0,1
Пеноблок 100 — 120 кг/м3 0,043-0,045
Пеноблок 121- 170 кг/м3 0,05-0,062
Пеноблок 171 — 220 кг/м3 0,057-0,063
Пеноблок 221 — 270 кг/м3 0,073
Эковата 0,037-0,042
Пенополиуретан (ППУ) 40 кг/м3 0,029 0,031 0,05
Пенополиуретан (ППУ) 60 кг/м3 0,035 0,036 0,041
Пенополиуретан (ППУ) 80 кг/м3 0,041 0,042 0,04
Пенополиэтилен сшитый 0,031-0,038
Вакуум
Воздух 27°C. 1 атм 0,026
Ксенон 0,0057
Аргон 0,0177
Аэрогель (Aspen aerogels) 0,014-0,021
Шлаковата 0,05
Вермикулит 0,064-0,074
Вспененный каучук 0,033
Пробка листы 220 кг/м3 0,035
Пробка листы 260 кг/м3 0,05
Базальтовые маты, холсты 0,03-0,04
Пакля 0,05
Перлит, 200 кг/м3 0,05
Перлит вспученный, 100 кг/м3 0,06
Плиты льняные изоляционные, 250 кг/м3 0,054
Полистиролбетон, 150-500 кг/м3 0,052-0,145
Пробка гранулированная, 45 кг/м3 0,038
Пробка минеральная на битумной основе, 270-350 кг/м3 0,076-0,096
Пробковое покрытие для пола, 540 кг/м3 0,078
Пробка техническая, 50 кг/м3 0,037

Часть информации взята нормативов, которые прописывают характеристики определенных материалов (СНиП , СП , СНиП II-3-79* (приложение 2)). Те материал, которые не прописаны в стандартах, найдены на сайтах производителей. Так как стандартов нет, у разных производителей они могут значительно отличаться, потому при покупке обращайте внимание на характеристики каждого покупаемого материала.

  • через стены уходит до 30% тепловой энергии общего расхода.
  • Через полы – 10%.
  • Через окна и двери – 20%.
  • Через крышу – 30%.

Теплопотери дома

То есть, получается так, что если неправильно рассчитать теплопроводность всех ограждений, то проживающим в таком доме людям придется довольствоваться лишь 10% тепловой энергии, которое выделяет отопительная система. 90% – это, как говорят, выброшенные на ветер деньги.

“Идеальный дом должен быть построен из теплоизоляционных материалов, в котором все 100% тепла будут оставаться внутри. Но по таблице теплопроводности материалов и утеплителей вы не найдете тот идеальный стройматериал, из которого можно было бы возвести такое сооружение. Потому что пористая структура – это низкие несущие способности конструкции. Исключением может быть древесина, но и она не идеал.”

Стена из бревен – одна из самых утепленных

Поэтому при строительстве домов стараются использовать разные строительные материалы, дополняющие друг друга по теплопроводности. При этом очень важно соотносить толщину каждого элемента в общей строительной конструкции. В этом плане идеальным домом можно считать каркасный. У него деревянная основа, уже можно говорить о теплом доме, и утеплители, которые закладываются между элементами каркасной постройки.

Устройство каркасного дома в плане его утепления

Рассмотрим несколько часто используемых строительных материалов и проведем сравнение их теплопроводность по толщине.

ФотоВид кирпичаТеплопроводность, Вт/м*К

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство Керамический полнотелый 0,5-0,8
Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство Керамический щелевой 0,34-0,43
Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство Поризованный 0,22
Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство Силикатный полнотелый 0,7-0,8
Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство Силикатный щелевой 0,4
Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство Клинкерный 0,8-0,9

Тепловая проводимость кирпичной кладки при разнице температуры в 10°С

Порода дереваБерезаДуб поперек волоконДуб вдоль волоконЕльКедрКленЛиственница

Теплопроводность, Вт/м С 0,15 0,2 0,4 0,11 0,095 0,19 0,13

Порода дереваЛипаПихтаПробковое деревоСосна поперек волоконСосна вдоль волоконТополь

Теплопроводность, Вт/м С 0,15 0,15 0,045 0,15 0,4 0,17

Коэффициент теплопроводности пробкового дерева самый низкий из всех пород древесины. Именно пробка часто используется в качестве теплоизоляционного материала при проведении утеплительных мероприятий.

ЧИТАТЬ ДАЛЕЕ:  Как сделать своими руками печь на отработке из подручных материалов

У древесины теплопроводность ниже, чем у бетона и кирпича

Данный показатель у металлов изменяется с изменением температуры, в которой они применяются. И здесь соотношение такое – чем выше температура, тем ниже коэффициент. В таблице покажем металлы, которые используются в строительной сфере.

Вид металлаСтальЧугунАлюминийМедь

Теплопроводность, Вт/м С 47 62 236 328

Теперь, что касается соотношения с температурой.

  • У алюминия при температуре -100°С теплопроводность составляет 245 Вт/м*К. А при температуре 0°С – 238. При 100°С – 230, при 700°С – 0,9.
  • У меди: при -100°С –405, при 0°С – 385, при 100°С – 380, а при 700°С – 350.

Тепловая проводимость у меди выше, чем у стали почти в семь раз

В основном нас будет интересовать таблица теплопроводности изоляционных материалов. Необходимо отметить, что если у металлов данный параметр зависит от температуры, то у утеплителей от их плотности. Поэтому в таблице будут расставлены показатели с учетом плотности материалом.

Теплоизоляционный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Минеральная вата (базальтовая) 50 0,048
100 0,056
200 0,07
Стекловата 155 0,041
200 0,044
Пенополистирол 40 0,038
100 0,041
150 0,05
Пенополистирол экструдированный 33 0,031
Пенополиуретан 32 0,023
40 0,029
60 0,035
80 0,041

И таблица теплоизоляционных свойств строительных материалов. Основные из них уже рассмотрены, обозначим те, которые в таблицы не вошли, и которые относятся к категории часто используемых.

Строительный материалПлотность, кг/м³Теплопроводность, Вт/м*К

Бетон 2400 1,51
Железобетон 2500 1,69
Керамзитобетон 500 0,14
Керамзитобетон 1800 0,66
Пенобетон 300 0,08
Пеностекло 400 0,11

Всем известно, что воздух, если его оставить внутри строительного материала или между слоями стройматериалов, это великолепный утеплитель. Почему так происходит, ведь сам воздух, как таковой, не может сдерживать тепло. Для этого надо рассмотреть саму воздушную прослойку, огражденную двумя слоями стройматериалов. Один из них соприкасается с зоной положительных температур, другой с зоной отрицательный.

Воздушная прослойка между внешней облицовкой и теплоизоляционным слоем

Тепловая энергия движется от плюса к минусу, и встречает на своем пути слой воздуха. Что происходит внутри:

  1. Конвекция теплого воздуха внутри прослойки.
  2. Тепловое излучение от материала с плюсовой температурой.

Поэтому сам тепловой поток – это сумма двух факторов с добавлением теплопроводности первого материала. Необходимо сразу отметить, что излучение занимает большую часть теплового потока. Сегодня все расчеты теплосопротивления стен и других несущих ограждающих конструкций проводят на онлайн-калькуляторах.

Воздушная прослойка внутри стены

В них четко оговаривается, что если разница температур стен, ограниченных воздухом, составляет 5°С, то излучение возрастает с 60% до 80%, если увеличить толщину прослойки с 10 до 200 мм. То есть, общий объем теплового потока остается тот же, излучение вырастает, а значит, теплопроводность стены падает.

Подвергать измерениям многие существующие и широко используемые стройматериалы не имеет смысла.

Все эти продукты, как правило, испытаны неоднократно, на основании чего составлена таблица теплопроводности строительных материалов, куда входят практически все нужные на стройке материалы.

Материал (стройматериал) Плотность, м3 КТП сухая, Вт/мºC % влажн._1 % влажн._2 КТП при влажн._1, Вт/мºC КТП при влажн._2, Вт/мºC
Битум кровельный 1400 0,27 0,27 0,27
Битум кровельный 1000 0,17 0,17 0,17
Шифер кровельный 1800 0,35 2 3 0,47 0,52
Шифер кровельный 1600 0,23 2 3 0,35 0,41
Битум кровельный 1200 0,22 0,22 0,22
Лист асбоцементный 1800 0,35 2 3 0,47 0,52
Лист асбестоцементный 1600 0,23 2 3 0,35 0,41
Асфальтобетон 2100 1,05 1,05 1,05
Толь строительная 600 0,17 0,17 0,17
Бетон (на гравийной подушке) 1600 0,46 4 6 0,46 0,55
Бетон (на шлаковой подушке) 1800 0,46 4 6 0,56 0,67
Бетон (на щебенке) 2400 1,51 2 3 1,74 1,86
Бетон (на песчаной подушке) 1000 0,28 9 13 0,35 0,41
Бетон (пористая структура) 1000 0,29 10 15 0,41 0,47
Бетон (сплошная структура) 2500 1,89 2 3 1,92 2,04
Пемзобетон 1600 0,52 4 6 0,62 0,68
Битум строительный 1400 0,27 0,27 0,27
Битум строительный 1200 0,22 0,22 0,22
Минеральная вата облегченная 50 0,048 2 5 0,052 0,06
Минеральная вата тяжелая 125 0,056 2 5 0,064 0,07
Минеральная вата 75 0,052 2 5 0,06 0,064
Лист вермикулитовый 200 0,065 1 3 0,08 0,095
Лист вермикулитовый 150 0,060 1 3 0,074 0,098
Газо-пено-золо бетон 800 0,17 15 22 0,35 0,41
Газо-пено-золо бетон 1000 0,23 15 22 0,44 0,50
Газо-пено-золо бетон 1200 0,29 15 22 0,52 0,58
Газо-пено-бетон (пенно-силикат) 300 0,08 8 12 0,11 0,13
Газо-пено-бетон (пенно-силикат) 400 0,11 8 12 0,14 0,15
Газо-пено-бетон (пенно-силикат) 600 0,14 8 12 0,22 0,26
Газо-пено-бетон (пенно-силикат) 800 0,21 10 15 0,33 0,37
Газо-пено-бетон (пенно-силикат) 1000 0,29 10 15 0,41 0,47
Строительный гипс плита 1200 0,35 4 6 0,41 0,46
Гравий керамзитовый 600 2,14 2 3 0,21 0,23
Гравий керамзитовый 800 0,18 2 3 0,21 0,23
Гранит (базальт) 2800 3,49 3,49 3,49
Гравий керамзитовый 400 0,12 2 3 0,13 0,14
Гравий керамзитовый 300 0,108 2 3 0,12 0,13
Гравий керамзитовый 200 0,099 2 3 0,11 0,12
Гравий шунгизитовый 800 0,16 2 4 0,20 0,23
Гравий шунгизитовый 600 0,13 2 4 0,16 0,20
Гравий шунгизитовый 400 0,11 2 4 0,13 0,14
Дерево сосна поперечные волокна 500 0,09 15 20 0,14 0,18
Фанера клееная 600 0,12 10 13 0,15 0,18
Дерево сосна вдоль волокон 500 0,18 15 20 0,29 0,35
Дерево дуба поперек волокон 700 0,23 10 15 0,18 0,23
Металл дюралюминий 2600 221 221 221
Железобетон 2500 1,69 2 3 1,92 2,04
Туфобетон 1600 0,52 7 10 0,7 0,81
Известняк 2000 0,93 2 3 1,16 1,28
Раствор извести с песком 1700 0,52 2 4 0,70 0,87
Песок под строительные работы 1600 0,035 1 2 0,47 0,58
Туфобетон 1800 0,64 7 10 0,87 0,99
Облицовочный картон 1000 0,18 5 10 0,21 0,23
Многослойный строительный картон 650 0,13 6 12 0,15 0,18
Вспененный каучук 60-95 0,034 5 15 0,04 0,054
Керамзитобетон 1400 0,47 5 10 0,56 0,65
Керамзитобетон 1600 0,58 5 10 0,67 0,78
Керамзитобетон 1800 0,86 5 10 0,80 0,92
Кирпич (пустотный) 1400 0,41 1 2 0,52 0,58
Кирпич (керамический) 1600 0,47 1 2 0,58 0,64
Пакля строительная 150 0,05 7 12 0,06 0,07
Кирпич (силикатный) 1500 0,64 2 4 0,7 0,81
Кирпич (сплошной) 1800 0,88 1 2 0,7 0,81
Кирпич (шлаковый) 1700 0,52 1,5 3 0,64 0,76
Кирпич (глиняный) 1600 0,47 2 4 0,58 0,7
Кирпич (трепельный) 1200 0,35 2 4 0,47 0,52
Металл медь 8500 407 407 407
Сухая штукатурка (лист) 1050 0,15 4 6 0,34 0,36
Плиты минеральной ваты 350 0,091 2 5 0,09 0,11
Плиты минеральной ваты 300 0,070 2 5 0,087 0,09
Плиты минеральной ваты 200 0,070 2 5 0,076 0,08
Плиты минеральной ваты 100 0,056 2 5 0,06 0,07
Линолеум ПВХ 1800 0,38 0,38 0,38
Пенобетон 1000 0,29 8 12 0,38 0,43
Пенобетон 800 0,21 8 12 0,33 0,37
Пенобетон 600 0,14 8 12 0,22 0,26
Пенобетон 400 0,11 6 12 0,14 0,15
Пенобетон на известняке 1000 0,31 12 18 0,48 0,55
Пенобетон на цементе 1200 0,37 15 22 0,60 0,66
Пенополистирол (ПСБ-С25) 15 – 25 0,029 – 0,033 2 10 0,035 – 0,052 0,040 – 0,059
Пенополистирол (ПСБ-С35) 25 – 35 0,036 – 0,041 2 20 0,034 0,039
Лист пенополиуретановый 80 0,041 2 5 0,05 0,05
Панель пенополиуретановая 60 0,035 2 5 0,41 0,41
Облегченное пеностекло 200 0,07 1 2 0,08 0,09
Утяжеленное пеностекло 400 0,11 1 2 0,12 0,14
Пергамин 600 0,17 0,17 0,17
Перлит 400 0,111 1 2 0,12 0,13
Плита перлитоцементная 200 0,041 2 3 0,052 0,06
Мрамор 2800 2,91 2,91 2,91
Туф 2000 0,76 3 5 0,93 1,05
Бетон на зольном гравии 1400 0,47 5 8 0,52 0,58
Плита ДВП (ДСП) 200 0,06 10 12 0,07 0,08
Плита ДВП (ДСП) 400 0,08 10 12 0,11 0,13
Плита ДВП (ДСП) 600 0,11 10 12 0,13 0,16
Плита ДВП (ДСП) 800 0,13 10 12 0,19 0,23
Плита ДВП (ДСП) 1000 0,15 10 12 0,23 0,29
Полистиролбетон на портландцементе 600 0,14 4 8 0,17 0,20
Вермикулитобетон 800 0,21 8 13 0,23 0,26
Вермикулитобетон 600 0,14 8 13 0,16 0,17
Вермикулитобетон 400 0,09 8 13 0,11 0,13
Вермикулитобетон 300 0,08 8 13 0,09 0,11
Рубероид 600 0,17 0,17 0,17
Плита фибролит 800 0,16 10 15 0,24 0,30
Металл сталь 7850 58 58 58
Стекло 2500 0,76 0,76 0,76
Стекловата 50 0,048 2 5 0,052 0,06
Стекловолокно 50 0,056 2 5 0,06 0,064
Плита фибролит 600 0,12 10 15 0,18 0,23
Плита фибролит 400 0,08 10 15 0,13 0,16
Плита фибролит 300 0,07 10 15 0,09 0,14
Клееная фанера 600 0,12 10 13 0,15 0,18
Плита камышитовая 300 0,07 10 15 0,09 0,14
Раствор цементо-песчаный 1800 0,58 2 4 0,76 0,93
Металл чугун 7200 50 50 50
Раствор цементно-шлаковый 1400 0,41 2 4 0,52 0,64
Раствор сложного песка 1700 0,52 2 4 0,70 0,87
Сухая штукатурка 800 0,15 4 6 0,19 0,21
Плита камышитовая 200 0,06 10 15 0,07 0,09
Цементная штукатурка 1050 0,15 4 6 0,34 0,36
Плита торфяная 300 0,064 15 20 0,07 0,08
Плита торфяная 200 0,052 15 20 0,06 0,064
Материал Теплопроводность материалов, Вт/м*⸰С Плотность, кг/м³
Пенополиуретан 0,020 30
0,029 40
0,035 60
0,041 80
Пенополистирол 0,037 10-11
0,035 15-16
0,037 16-17
0,033 25-27
0,041 35-37
Пенополистирол (экструдированный) 0,028-0,034 28-45
Базальтовая вата 0,039 30-35
0,036 34-38
0,035 38-45
0,035 40-50
0,036 80-90
0,038 145
0,038 120-190
Эковата 0,032 35
0,038 50
0,04 65
0,041 70
Изолон 0,031 33
0,033 50
0,036 66
0,039 100
Пенофол 0,037-0,051 45
0,038-0,052 54
0,038-0,052 74

Материалы из минеральных волокон, Изоляционные материалы на природном основании, Огнестойкая теплоизоляционная керамика, Изоляционные материалы на клеточном гипсовом ангидритовом основании, Строительная керамика, Теплоизоляционные растворы и штукатурные смеси и т.д. Наиболее важным является использование плоского измерительного оборудования в специальных применениях, где можно в полной мере применять его особые благоприятные свойства.

Определение теплопроводности в зависимости от влажности

Влага в пористой структуре строительных материалов оказывает основное влияние на величину коэффициента теплопроводности. Проблема большинства лабораторных методов определения коэффициента теплопроводности — очень длительный период измерения, при котором испытуемый образец подвергается воздействию теплового потока. Даже в том случае, если испытуемый образец упакован в паронепроницаемую пленку в течение периода измерения, происходит новое распределение влаги в структуре материала, и конечное измеренное значение не делает достаточно объективно реальные свойства материала при данной влажности содержание.

Вид материала
Коэффициенты теплопроводности,

Вт/(мм*°С)
Сухие
Средние условия тепловой отдачи
Условия повышенной влажности
Полистирол 36 — 41 38 — 44 44 — 50
Эструдированный полистирол 29 30 31
Войлок 45
Раствор цемент песок 580 760 930
Раствор известь песок 470 700 810
Штукатурка из гипса 250
Каменная вата 180 кг/м 3 38 45 48
140-175 кг/м 3 37 43 46
80-125 кг/м 3 36 42 45
40-60 кг/м 3 35 41 44
25-50 кг/м 3 36 42 45
Стекловата 85 кг/м 3 44 46 50
75 кг/м 3 40 42 47
60 кг/м 3 38 40 45
45 кг/м 3 39 41 45
35 кг/м 3 39 41 46
30 кг/м 3 40 42 46
20 кг/м 3 40 43 48
17 кг/м 3 44 47 53
15 кг/м 3 46 49 55
Пеноблок и газоблок на основе цемента 1000 кг/м 3 290 380 430
800 кг/м 3 210 330 370
600 кг/м 3 140 220 260
400 кг/м 3 110 140 150
Пеноблок и газоблок на извести 1000 кг/м 3 310 480 550
800 кг/м 3 230 390 450
400 кг/м 3 130 220 280
Дерево сосны и ели в распиле поперек волокон 9 140 180
Дерево сосны и ели в распиле вдоль волокон 180 290 350
Древесина дуба поперек волокон 100 180 230
Древесина дуб вдоль волокон 230 350 410
Медь 38200 — 39000
Алюминий 20200 — 23600
Латунь 9700 — 11100
Железо 9200
Олово 6700
Сталь 4700
Стекло 3 мм 760
Снежный слой 100 — 150
Вода обычная 560
Воздух средней температуры 26
Вакуум 0
Аргон 17
Ксенон 0,57
Арболит 7 — 170
Пробка 35
Железобетон плотность 2,5 тыс. кг/м 3 169 192 204
Бетон на щебне с плотностью 2,4 тыс. кг/м 3 151 174 186
Бетон на керамзите с плотностью 1,8 тыс. кг/м 3 660 800 920
Бетон на керамзите с плотностью 1,6 тыс. кг/м 3 580 670 790
Бетон на керамзите с плотностью 1,4 тыс. кг/м 3 470 560 650
Бетон на керамзите с плотностью 1,2 тыс. кг/м 3 360 440 520
Бетон на керамзите с плотностью 1 тыс. кг/м 3 270 330 410
Бетон на керамзите с плотностью 800 кг/м 3 210 240 310
Бетон на керамзите с плотностью 600 кг/м 3 160 200 260
Бетон на керамзите с плотностью 500 кг/м 3 140 170 230
Крупноформатный блок из керамики 140 — 180
Кирпич из керамики плотный 560 700 810
Силикатный кирпич 700 760 870
Кирпич из керамики полый 1500 кг/м³ 470 580 640
Кирпич из керамики полый 1300 кг/м³ 410 520 580
Кирпич из керамики полый 1000 кг/м³ 350 470 520
Силикат на 11 отверстий (плотность 1500 кг/м 3) 640 700 810
Силикат на 14 отверстий (плотность 1400 кг/м 3) 520 640 760
Гранитный камень 349 349 349
Мраморный камень 2910 2910 2910
Известняковый камень, 2000 кг/м 3 930 1160 1280
Известняковый камень, 1800 кг/м 3 700 930 1050
Известняковый камень, 1600 кг/м 3 580 730 810
Известняковый камень, 1400 кг/м 3 490 560 580
Тюф 2000 кг/м 3 760 930 1050
Тюф 1800 кг/м 3 560 700 810
Тюф 1600 кг/м 3 410 520 640
Тюф 1400 кг/м 3 330 430 520
Тюф 1200 кг/м 3 270 350 410
Тюф 1000 кг/м 3 210 240 290
Сухой песок 1600 кг/м 3 350
Фанера прессованная 120 150 180
Отпрессованная доска 1000 кг/м 3 150 230 290
Отпрессованная доска 800 кг/м 3 130 190 230
Отпрессованная доска 600 кг/м 3 110 130 160
Отпрессованная доска 400 кг/м 3 80 110 130
Отпрессованная доска 200 кг/м 3 6 7 8
Пакля 5 6 7
Гипсокартон (обшивочный), 1050 кг/м 3 150 340 360
Гипсокартон (обшивочный), 800 кг/м 3 150 190 210
380 380 380
330 330 330
Линолеум на утеплителе 1800 кг/м 3 350 350 350
Линолеум на утеплителе 1600 кг/м 3 290 290 290
Линолеум на утеплителе 1400 кг/м 3 200 230 230
Вата на эко основе 37 — 42
Перлит пескообразный с плотностью 75 кг/м 3 43 — 47
Перлит пескообразный с плотностью 100 кг/м 3 52
Перлит пескообразный с плотностью 150 кг/м 3 52 — 58
Перлит пескообразный с плотностью 200 кг/м 3 70
Вспененное стекло плотность которого 100 — 150 кг/м 3 43 — 60
Вспененное стекло плотность которого 51 — 200 кг/м 3 60 — 63
Вспененное стекло плотность которого 201 — 250 кг/м 3 66 — 73
Вспененное стекло плотность которого 251 — 400 кг/м 3 85 — 100
Вспененное стекло в блоках плотность которого 100 — 120 кг/м 3 43 — 45
Вспененное стекло плотность которого 121 — 170 кг/м 3 50 — 62
Вспененное стекло плотность которого 171 — 220 кг/м 3 57 — 63
Вспененное стекло плотность которого 221 — 270 кг/м 3 73
Керамзитная и гравийная насыпь плотность которого 250 кг/м 3 99 — 100 110 120
Керамзитная и гравийная насыпь плотность которого 300 кг/м 3 108 120 130
Керамзитная и гравийная насыпь плотность которого 350 кг/м 3 115 — 120 125 140
Керамзитная и гравийная насыпь плотность которого 400 кг/м 3 120 130 145
Керамзитная и гравийная насыпь плотность которого 450 кг/м 3 130 140 155
Керамзитная и гравийная насыпь плотность которого 500 кг/м 3 140 150 165
Керамзитная и гравийная насыпь плотность которого 600 кг/м 3 140 170 190
Керамзитная и гравийная насыпь плотность которого 800 кг/м 3 180 180 190
Гипсовые плиты плотность которого 1350 кг/м 3 350 500 560
Гипсовые плиты плотность которого 1100 кг/м 3 230 350 410
Перлитовый бетон плотность которого 1200 кг/м 3 290 440 500
МТПерлитовый бетон плотность которого 1000 кг/м 3 220 330 380
Перлитовый бетон плотность которого 800 кг/м 3 160 270 330
Перлитовый бетон плотность которого 600 кг/м 3 120 190 230
Вспененный полиуретан плотность которого 80 кг/м 3 41 42 50
Вспененный полиуретан плотность которого 60 кг/м 3 35 36 41
Вспененный полиуретан плотность которого 40 кг/м 3 29 31 40
Сшитый вспененный полиуретан 31 — 38

Как определить коэффициенты теплопроводности строительных материалов таблица

где, H – толщина слоя, м;

R – сопротивление теплопередаче, (м2*°С)/Вт;

λ – коэффициент теплопроводности, Вт/(м*°С).

Определение коэффициента теплопроводности увлажняющих связующих смесей

Другим типичным применением плоского измерительного оборудования является определение коэффициента теплопроводности увлажняющих связующих смесей. Во время гидратации происходят значительные изменения значения теплопроводности гидратирующего материала. Эти изменения частично вызваны превращением несвязанной водяной воды в структуру вновь образованных продуктов гидратации, а также развитием и изменением внутренней микроструктуры материалов.

Гидратация испытуемого образца происходит в изолирующем термокамере, чтобы изолировать данную систему, по крайней мере, частично от внешней среды, во-первых, от резких изменений внешней температуры. Испытуемый образец упаковывали в тонкую полиэтиленовую фольгу, чтобы предотвратить испарение воды в партии во время измерения и отделить испытательный зонд от агрессивного материала связующего. Во время измерения необходимо было выполнить два следующих условия.

  • ограждающая конструкция имеет однородное монолитное строение;
  • используемые стройматериалы имеют естественную влажность.

При проектировании необходимые нормируемые и справочные данные берутся из нормативной документации:

  • СНиП23-01-99 – Строительная климатология;
  • СНиП 23-02-2003 – Тепловая защита зданий;
  • СП 23-101-2004 – Проектирование тепловой защиты зданий.

Для строительства зданий используют материалы с низким коэффициентом теплопроводности. Наиболее популярными являются:

  • Железобетон, значение теплопроводности которого составляет 1,68Вт/м*К. Плотность материала достигает 2400-2500 кг/м 3 .
  • Древесина, издревле использующаяся как строительный материал. Ее плотность и теплопроводность в зависимости от породы составляют 150-2100 кг/м 3 и 0,2-0,23Вт/м*К соответственно.

Еще один популярный строительный материал — кирпич. В зависимости от состава он обладает следующими показателями:

  • саманный (изготовленный из глины): 0,1-0,4 Вт/м*К;
  • керамический (изготовленный методом обжига): 0,35-0,81 Вт/м*К;
  • силикатный (из песка с добавлением извести): 0,82-0,88 Вт/м*К.

Коэффициент теплопроводности наиболее популярных в наше время:

  • пенополистирол, плотность которого такая же, как и у предыдущего материала. Но при этом коэффициент передачи тепла находится на уровне 0,029-0,036Вт/м*К;
  • стекловата. Характеризуется коэффициентом, равным 0,038-0,045Вт/м*К;
  • с показателем 0,035-0,042Вт/м*К.

Использование коэффициента теплопроводности материала позволит возвести желаемую постройку. Главное: выбрать продукт, отвечающий всем необходимым требованиями. Тогда здание получится комфортным для проживания; в нем будет сохраняться благоприятный микроклимат.

Правильно подобранный снизит потери тепла, по причине чего больше не нужно будет «отапливать улицу». Благодаря этому финансовые затраты на отопление существенно снизятся. Такая экономия позволит в скором времени вернуть все деньги, которые будут затрачены на приобретение теплоизолятора.

  1. Утеплители для мансардной крыши.
  2. Материалы для утепления дома изнутри.
  3. Утеплители для потолка.
  4. Материалы для наружной теплоизоляции.
  5. Утеплитель для пола в деревянном доме.

В строительстве все материалы условно подразделяются на теплоизоляционные и конструкционные. Конструкционное сырье отличается наибольшими показателями теплопроводности, но именно его применяют для постройки стен, перекрытий, прочих ограждений. Согласно таблице теплопроводности строительных материалов, при возведении стен из железобетона, для низкого теплообмена с окружающей средой толщина конструкции должна быть около 6 метров. В таком случае строение получится огромным, громоздким и потребует немалых затрат.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Наглядный пример — при какой толщине различных материалов их коэффициент теплопроводности будет одинаковым

Поэтому при возведении постройки следует отдельное внимание уделять дополнительным теплоизолирующим материалам. Слой теплоизоляции может не понадобиться только для построек из дерева или пенобетона, но даже при использовании подобного низкопроводного сырья толщина конструкции должна быть не менее 50 см.

Теплопотери дома

Рассчитать толщину стены не так просто. Для этого нужно сложить все коэффициенты теплопроводности материалов, которые были использованы для сооружения стены. К примеру, кирпич, штукатурный раствор снаружи, плюс наружная облицовка, если такая будет использоваться. Внутренние выравнивающие материалы, это может быть все та же штукатурка или гипсокартонные листы, другие плитные или панельные покрытия. Если есть воздушная прослойка, то учитывают и ее.

Толщина стен из разных стройматериалов с одинаковым тепловым сопротивлением

Есть так называемая удельная теплопроводность по регионам, которую берут за основу. Так вот расчетная величина не должна быть больше удельной. В таблице ниже по городам дана удельная тепловая проводимость.

РегионМоскваСанкт-ПетербургРостовСочи

Теплопроводность 3,14 3,18 2,75 2,1

То есть, чем южнее, тем общая теплопроводность материалов должна быть меньше. Соответственно, можно уменьшать и толщину стены. Что касается онлайн-калькулятора, то предлагаем ниже посмотреть видео, на котором разбирается, как правильно пользоваться таким расчетным сервисом.

Пенообразные

Чтобы понять, насколько эффективным будет тот или иной утеплитель, необходимо сравнить основные показатели материалов. Это можно сделать, просмотрев таблицу 1.

Материал Плотность кг/м3 Теплопроводность Гигроскопичность Минимальный слой, см
Пенополистирол 30-40 Очень низкая Средняя 10
Пластиформ 50-60 Низкая Очень низкая 2
Пенофол 60-70 Низкая Средняя 5
Пенопласт 35-50 Очень низкая Средняя 10
Пеноплекс 25-32 низкая низкая 20
Минеральная вата 35-125 Низкая Высокая 10-15
Базальтовое волокно 130 Низкая высокая 15
500 Высокая Низкая 20
Ячеистый бетон 400-800 Высокая Высокая 20-40
Пеностекло 100-600 Низкая низкая 10-15

Таблица 1 Сравнение теплоизоляционных свойств материалов

При этом многие отдают предпочтение пластиформу, минеральной вате или ячеистому бетону. Это связанно с индивидуальными предпочтениями, особенностями монтажа и некоторыми физическими свойствами.

Материал должен быть негорючим и безопасным. Гореть может любой материал, разница состоит в том, при каком температуре он возгорается. Важным является то, чтобы утеплитель был самозатухающим.

  • Паро- и водонепроницаемость.

Преимущество имеют те материалы, которые обладают водонепроницаемостью, так как впитывание влаги приводит к тому, что  эффективность материала становится низкой и полезные характеристики утеплителя через год использования снижаются на 50% и более.

В среднем срок службы изоляционных материалов составляет от 5 до 10-15 лет. Теплоизоляционные материалы, имеющие в составе вату  в первые годы службы значительно снижают свою эффективность.  Зато пенополиуретан обладает сроком службы свыше 50 лет.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

ЧИТАТЬ ДАЛЕЕ:  Каким должен быть и почему важен уклон канализационной трубы

Монтаж минеральной ваты

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

  • показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;
  • влагопоглощение имеет большое значение при утеплении наружных элементов;
  • толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;
  • важна горючесть. Качественное сырье имеет способность к самозатуханию;
  • термоустойчивость отображает способность выдерживать температурные перепады;
  • экологичность и безопасность;
  • звукоизоляция защищает от шума.

Характеристики разных видов утеплителей

В качестве утеплителей применяются следующие виды:

  • минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

Данный материал относится к самым доступным и простым вариантам

  • пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;
  • базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;
  • пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

Для пеноплекса характерна пористая структура

  • пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;
  • экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

Данный вариант бывает разной толщины

  • пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины,  лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

Материал Плотность Паропроницаемость Теплопроводность
Пенополистирол 150кг/м3 0,05 0,05
Пенополистирол 100кг/м3 0,05 0,041
Минвата 200кг/м3 0,49 0,07
Минвата 100кг/м3 0,56 0,056
Пенополиуретан 80кг/м3 0,05 0,041
Пенополиуретан 60кг/м3 0,05 0,035
Пеностекло 400кг/м3 0.02 0,11
  • Теплопроводность. Чем ниже теплопроводность, тем меньше требуется утеплительный слой, а значит, и ваши расходы на утепление сократятся.
  • Влагопроницаемость. Меньшая влагопроницаемость снижает негативное воздействие влаги на утеплитель при последующей эксплуатации.
  • Пожаробезопасность. Материал не должен поддерживать горение и выделять ядовитые пары, а иметь свойство к самозатуханию.
  • Экономичность. Утеплитель должен быть доступным по стоимости для широкого слоя потребителей.
  • Долговечность. Чем больше срок использования утеплителя, тем он дешевле обходится потребителю при эксплуатации и не требует частой замены или ремонта.
  • Экологичность. Материал для теплоизоляции должен быть экологически чистым, безопасным для здоровья человека и окружающей природы. Эта характеристика важна для жилых помещений.
  • Толщина материала. Чем тоньше утеплитель, тем меньше будет «съедаться» жилое пространство помещения.
  • Вес материала. Меньший вес утеплителя даст меньшее утяжеление утепляемой конструкции после монтажа.
  • Звукоизоляция. Чем выше звукоизоляция, тем лучше защита жилых помещений от шума со стороны улицы.
  • Простота монтажа. Момент достаточно важен для любителей делать ремонт в доме своими руками.
Вид материала
Теплопередача, Вт/(м*°С)
Толщина стен, мм
Иллюстрация
3Д панели 5500

Лиственные породы деревьев с влажностью 15% 0,15 1230

Бетон на основе керамзита 0,2 1630

Пеноблок с плотностью 1 тыс. кг/м³ 0,3 2450

Хвойные породы деревьев вдоль волокон 0,35 2860

Дубовая вагонка 0,41 3350

Кирпичная стена на растворе из цемента и песка 0,87 7110

Железобетонные перекрытия 1,7 13890

  • конструкционно-теплоизоляционные (от 0,210);
  • теплоизоляционные (до 0,082 – А, от 0,082 до 0,116 – Б и т.д.).

Выводы

При таком разнообразии всевозможных теплоизоляций таблица теплопроводности строительных материалов как нельзя лучше поможет вам решить вопрос с выбором. Тёплого и комфортного вам жилья!

Сегодня очень остро стоит вопрос рационального использования ТЭР. Непрерывно прорабатываются пути экономии тепла и энергии с целью обеспечения энергетической безопасности развития экономики как страны, так и каждой отдельной семьи.

Создание эффективных энергоустановок и систем теплоизоляции (оборудования, обеспечивающего наибольший теплообмен (например, паровых котлов) и, наоборот, от которого он нежелателен (плавильные печи)) невозможно без знания принципов теплопередачи.

Изменились подходы к тепловой защите зданий, возросли требования к строительным материалам. Любой дом нуждается в утеплении и системе отопления
. Поэтому при теплотехническом расчёте ограждающих конструкций важен расчёт показателя теплопроводности.

Видеоролик тематически направленный, где достаточно подробно разъясняется – что такое КТП и «с чем его едят». Ознакомившись с материалом, представленным в ролике, появляются высокие шансы стать профессиональным строителем.

Очевидный момент – потенциальному строителю обязательно необходимо знать о теплопроводности и ее зависимости от различных факторов. Эти знания помогут строить не просто качественно, но с высокой степенью надежности и долговечности объекта. Использование коэффициента по существу – это реальная экономия денег, допустим, на оплате за те же коммунальные услуги.

Расчет толщины стены по теплопроводности вручную по формулам или калькулятором

Однако, при строительстве дачи, садового домика многие владельцы предпочитают экономить на приобретении проектной документации. В этом случае расчеты толщины стен можно произвести самостоятельно. Специалисты не рекомендуют пользоваться сервисами на сайтах компаний, реализующих конструкционные материалы, утеплители.

теплосопротивление стены – 3,5 либо больше этого числа (согласно СНиП), является суммой теплосопротивлений всех слоев, из которых состоит несущая стенакоэффициент теплопроводности строительных материалов – каждый производитель конструкционного материала, светопрозрачных конструкций, утеплителя указывает его в обязательном порядке, однако, лучше дополнительно свериться с таблицей в нормативах СНиПтеплосопротивление отдельного слоя стены – вычисляется путем умножения толщины слоя (м) на коэффициент теплопроводности материала

Чтобы организовать точный расчёт необходимо комплексно использовать несколько СниПов, ГОСТов, пособий и СП:

  • СНиП 23-02-2003 (СП 50.13330.2012). «Тепловая защита зданий». Редакция от 2012 года;
  • СНиП 23-01-99 (СП 131.13330.2012). «Строительная климатология». Редакция от 2012 года;
  • СП 23-101-2004. «Проектирование тепловой защиты зданий»;
  • Пособие. Е.Г. Малявина «Теплопотери здания. Справочное пособие»;
  • ГОСТ 30494-96 (заменен на ГОСТ 30494-2011 с 2011 года). «Здания жилые и общественные. Параметры микроклимата в помещениях»;

Производя вычисления по этим документам, определяют тепловые особенности строительного материала, ограждающего конструкцию, сопротивление тепловой передачи и степень совпадений с нормативными документами. Параметры расчёта исходя из таблицы теплопроводности строительного материала приведены на фото ниже.

  1. Не ленитесь потратить время на изучение технической литературы по свойствам теплопроводности материалов. Этот шаг сведёт к минимуму финансовые и тепловые потери.
  2. Не игнорируйте особенности климата в вашем регионе. Информацию о ГОСТах по этому поводу можно с лёгкостью отыскать в интернете.
  1. Прежде, чем приступать к укладке утеплителя, убедитесь, что поверхность стены или перекрытия не имеет влаги.
    В противном случае через время между поверхностями образуется плесень.
  1. Если вы планируете монтировать невлагостойкий материал на внешней стене, позаботьтесь о тщательной обработке гидроизоляционным клеем.
  1. Не стоит производить внутреннее утепление поверхностей синтетическими материалами. Это негативно скажется на вашем здоровье.

Условия эксплуатации

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Определение условий эксплуатации поможет получить объективное значение теплопроводности (параметры «А» и «Б»). Для этого нужно пройти 3 простых этапа.

Режим Влажность внутреннего воздуха, %, при температуре, °С
До 12 °C От 12 до 24 °C Больше 24 °C
Сухой До 60 % До 50 % До 40 %
Нормальный От 60 до 75 % От 50 до 60 % От 40 до 50 %
Влажный Свыше 75 % От 60 до 75 % От 50 до 60 %
Мокрый Свыше 75 % Свыше 60 %

Этап 2. Определим зону влажности в зависимости от региона. Характеристики указаны цифрами от 1 до 3. Их можно посмотреть на картинке подзаголовка.

Влажностный режим помещений зданий (этап 1) Условия эксплуатации А и Б в зоне влажности (по карте этапа 2)
Сухой Нормальной Влажной
Сухой А А Б
Нормальный А Б Б
Влажный или мокрый Б Б Б

Пример: пусть в нашем помещении при комнатной температуре от 12 до 24 °C влажность не поднимается выше 50 %, значит режим — сухой. Дом расположен в Твери — 2 зона влажности (нормальная). Тогда условия эксплуатации получаются с обозначением «А»

Как правильно выбрать утеплитель

Ежегодно появляются новые стройматериалы на различных выставках. С их помощью можно значительно сократить расходы на энергоресурсы в холодное время года. Но какой же из них будет оптимальным решением по всем параметрам. Мнения экспертов во многом расходятся.

Подбор материала основывается на свойствах, стоимости и удобстве монтажа. Производители наносят определенную маркировку на изделия, что существенно упрощает выбор. Например, пенопласт для стен, пола или крыши отличается свойствами и имеет специальные отметки.

Многие отдают предпочтение минеральной вате в сухих помещениях, пенопласту в помещениях с повышенной влажностью, и напыляемым утеплителям для труднодоступных мест.

Зачем нужна теплоизоляция

При выборе теплоизоляции нужно учитывать не только ее физические свойства, но и такие параметры, как легкость монтажа, потребность в дополнительном обслуживании, долговечность и стоимость.

Как показывает практика, проще всего осуществлять монтаж пенополиуретана и пеноизола, которые наносятся на обрабатываемую поверхность в форме пены. Эти материалы пластичны, они с легкостью заполняют полости внутри стен постройки. Недостатком вспениваемых веществ является потребность в использовании специального оборудования для их распыления.

Как показывает приведенная выше таблица, достойную конкуренцию пенополиуретану составляет экструдированный пенополистирол. Этот материал поставляются в виде твердых блоков, но с помощью обычного столярного ножа ему можно придать любую форму. Сравнивая характеристики пенных и твердых полимеров, стоит отметить, что пена не образует швов, и это является ее главным преимуществом по сравнению с блоками.

Минеральная вата по свойствам похожа на пенопласты и пенополистирол, однако при этом «дышит» и не горит. Также она обладает лучшей устойчивостью при воздействии влаги и практически не меняет свои качества в процессе эксплуатации. Если стоит выбор между твердыми полимерами и минеральной ватой, лучше отдать предпочтение последней.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

У каменной ваты сравнительные характеристики те же, что и у минеральной, но стоимость выше. Эковата имеет приемлемую цену и легко монтируется, но отличается низкой прочностью на сжатие и со временем проседает. Стекловолокно также проседает и, кроме того, осыпается.

Для теплоизоляции дома иногда применяются сыпучие материалы – перлит и гранулы из бумаги. Они отталкивают воду и устойчивы к воздействию патогенных факторов. Перлит экологичен, он не горит и не оседает. Тем не менее, сыпучие материалы редко применяются для утепления стен, лучше с их помощью обустраивать полы и перекрытия.

Из органических материалов необходимо выделить лен, древесное волокно и пробковое покрытие. Они безопасны для окружающей среды, но подвержены горению, если не пропитаны специальными веществами. Кроме того, древесное волокно подвержено воздействию биологических факторов.

В целом, если учитывать стоимость, практичность, теплопроводность и долговечность утеплителей, то наилучшие материалы для отделки стен и перекрытий – это пенополиуретан, пеноизол и минеральная вата. Остальные виды изоляции обладают специфическими свойствами, так как разработаны для нестандартных ситуаций, а применять такие утеплители рекомендуется только в том случае, если других вариантов нет.

Актуальность теплоизоляции заключается в следующем:

  • Сохранение тепла в зимний период и прохлады в летний период.

Потери тепла сквозь стены обычного многоэтажного жилого дома составляют 30-40%. Для снижения теплопотерь нужны специальные теплоизоляционные материалы. Применение в зимний период электрических обогревателей способствует дополнительному расходу на электроэнергию. Эти расходы выгодней компенсировать использованием качественного теплоизоляционного материала, обеспечивающего сохранение тепла в зимний период и прохладу в летнюю жару. При этом затраты на охлаждение помещения кондиционером также будут сведены к минимуму.

  • Увеличение долговечности конструкций здания.

В случае промышленных зданий с использованием металлического каркаса, утеплитель позволяет защитить поверхность металла от коррозии, являющейся самым пагубным дефектом для данного вида конструкций. А срок службы для здания из кирпича определяется количеством циклов замораживания/оттаивания. Воздействие этих циклов воспринимает утеплитель, ведь точка росы при этом находится в теплоизоляционном материале, а не материале стены. Такое утепление позволяет увеличить срок службы здания во много раз.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Защита от возрастающего уровня шума достигается при использовании таких шумопоглощающих материалов (толстые матрасы, звукоотражающие стеновые панели).

  • Увеличение полезной площади зданий.

Использование системы теплоизоляции позволяет уменьшить толщину наружных стен, при этом увеличивая внутреннюю площадь здания.

Как определить коэффициенты теплопроводности строительных материалов таблица

Теплопотери дома

Планируя проект будущего дома, нужно обязательно учесть возможные потери тепловой энергии. Большая часть тепла уходит через двери, окна, стены, крышу и полы.

В многоквартирных домах потери тепла будут отличаться по сравнению с частным строением

Если не выполнять расчеты по теплосбережению дома, то в помещении будет прохладно. Рекомендуется постройки из кирпича, бетона и камня дополнительно утеплять.

Утепление построек из бетона или камня повышает комфортные условия внутри здания

Монтажные работы по утеплению каркасного сооружения требуют использования дополнительных конструктивных элементов

  • здание из стандартных материалов: шлакоблоков или кирпича. При этом утепление часто проводится по наружной стороне.

Особенности монтажа теплоизолирующего материала с внутренней стороны

Прежде чем определиться с материалами для отделки частного дома или квартиры, необходимо правильно рассчитать толщину слоя конкретного утеплителя.

Также следует придерживаться следующих рекомендаций:

  1. Для горизонтальных поверхностей (пол, потолок) можно использовать практически любой материал. Применение дополнительного слоя с высокой механической прочностью обязательно.
  2. Цокольные перекрытия рекомендуется утеплять стройматериалами с низкой гигроскопичностью. Повышенная влажность должна быть учтена. В противном случае утеплитель под воздействием влаги частично или полностью потеряет свойства.
  3. Для вертикальных поверхностей (стены) необходимо использовать материалы плитно-листового типа. Насыпные или рулонные со временем будут проседать, поэтому необходимо тщательно продумать способ крепежа.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

При выборе утеплителя нужно изучить характеристики каждого варианта

Понятие теплопроводности

Количественно оценить свойство предметов пропускать тепловую энергию можно посредством коэффициента теплопроводности. Очень важно сделать грамотный выбор строительных материалов, утеплителя для достижения наибольшего сопротивления теплопередачи. Просчёты или неразумная экономия в будущем могут привести к ухудшению микроклимата в помещении, сырости в здании, мокрым стенам, душным комнатам. А главное – к большим расходам на отопление.

Для сравнения ниже представлена таблица теплопроводностей материалов и веществ.

Таблица 1

Самые высокие значения имеют металлы, низкие – теплоизоляционные предметы.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Теплопроводность представляет собой процесс перемещения тепловой энергии от прогретых частей к холодным. Обменные процессы происходят до полного равновесия температурного значения.

Комфортный микроклимат в доме зависит от качественной теплоизоляции всех поверхностей

Процесс теплопередачи характеризуется промежутком времени, в течение которого выравниваются температурные значения. Чем больше времени проходит, тем ниже теплопроводность строительных материалов, свойства которых отображает таблица. Для определения данного показателя применяется такое понятие как коэффициент теплопроводности.

Он определяет, какое количество тепловой энергии проходит через единицу площади определенной поверхности. Чем данный показатель больше, тем с большей скоростью будет остывать здание. Таблица теплопроводности нужна при проектировании защиты постройки от теплопотерь. При этом можно снизить эксплуатационный бюджет.

Потери тепла на разных участках постройки будут отличаться

При выборе строительных материалов для строительства необходимо обращать внимание на характеристики материалов. Одна из ключевых позиций — теплопроводность. Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Диаграмма, которая иллюстрирует разницу в теплопроводности материалов

Материалы с низкой теплопроводностью используются для утепления, с высокой — для переноса или отвода тепла. Например, радиаторы делают из алюминия, меди или стали, так как они хорошо передают тепло, то есть имеют высокий коэффициент теплопроводности. Для утепления используются материалы с низким коэффициентом теплопроводности — они лучше сохраняют тепло.

В случае если объект состоит из нескольких слоев материала, его теплопроводность определяется как сумма коэффициентов всех материалов. При расчетах, рассчитывается теплопроводность каждой из составляющих «пирога», найденные величины суммируются. В общем получаем теплоизоляцонную способность ограждающей конструкции (стен, пола, потолка).

Теплопроводность строительных материалов показывает количество тепла, которое он пропускает за единицу времени

Есть еще такое понятие как тепловое сопротивление. Оно отображает способность материала препятствовать прохождению по нему тепла. То есть, это обратная величина по отношению к теплопроводности. И, если вы видите материал с высоким тепловым сопротивлением, его можно использовать для теплоизоляции. Примером теплоизоляционных материалов может случить популярная минеральная или базальтовая вата, пенопласт и т.д.

Теплопотери дома

Теплопроводность напрямую зависит от следующих факторов:

  • Плотность. Чем ближе молекулы вещества находятся друг к другу, тем быстрее идет обмен энергией. Значит, повышение плотности ведет к снижению теплозащиты.
  • Структура. В пористых материалах содержатся капсулы с воздухом, который существенно затормаживает процесс улетучивания тепла. Пористый — значит более теплый.
  • Влажность. У воды показатель λ при температуре 20°C в 23 раза больше, чем у воздуха. Поэтому промокший кирпич остывает быстрее.

На основе уровня влажности мы вычислим условия эксплуатации, необходимые для уточнения поиска значений теплопроводности в таблице.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Это процесс отдачи тепловой энергии с целью получения теплового равновесия. Температурный режим должен быть выровнен, главным остается скорость, с которой будет осуществлена эта задача. Если рассмотреть теплопроводность по отношению к дому, то чем дольше происходит процесс выравнивания температур воздуха в доме и на улице, то тем лучше. Говоря простыми словами, теплопроводность – это показатель, по которому можно понять, как быстро остывают стены в доме.

Этот критерий представлен в числовом значении и характеризуется коэффициентом тепловой проводимости. Благодаря ему можно узнать какое количество тепловой энергии за единицу времени сможет пройти через единицу поверхности. Чем выше значение теплопроводности у утеплителя, тем он быстрее проводит тепловую энергию.

Чем ниже значение коэффициента проводимости тепла, тем дольше материал сможет удерживать тепло в зимние дни, а прохладу в летние

Она отображается коэффициентом теплопроводности. Это количество тепла, которое может провести тот или иной материал за единицу времени. То есть, чем меньше этот коэффициент, тем хуже материал проводит тепло. И наоборот, чем выше цифра, тем тепло отводится лучше.

Здания и помещения Градусо-сутки отопительного периода, °С·сут/год Базовые значения требуемого сопротивления теплопередаче R0, (м²·°С)/Вт, ограждающих конструкций
Стен Покрытий и перекрытий над проездами Перекрытий чердачных над неотаплива-емыми подпольями и подвалами Окон и балконных дверей, витрин и витражей Зенитных фонарей
Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития 2000 2,1 3,2 2,8 0,3 0,3
4000 2,8 4,2 3,7 0,45 0,35
6000 3,5 5,2 4,6 0,6 0,4
8000 4,2 6,2 5,5 0,7 0,45
10000 4,9 7,2 6,4 0,75 0,5
12000 5,6 8,2 7,3 0,8 0,55

Сопротивление теплопередаче R = толщина слоя, м / коэффициент теплопередачи материала λ, Вт/(м·°С).

R=0,15/0,29=0,51 (м²·°С)/Вт.

Толщина слоя, м = нормативный R0 из таблицы, (м²·°С)/Вт × коэффициент теплопередачи материала λ, Вт/(м·°С).

Пример: Толщина слоя = 2,1 (м²·°С)/Вт × 0,29 Вт/(м·°С) = 0,609 м. То есть, чтобы добиться минимальных условий сохранения тепловой энергии, нам нужно построить стены из елового бруса толщиной примерно 60 см. Только применение утеплителей снизит расход древесины.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Общая толщина складывается по формуле: толщ. 1 слоя  толщ. 2 слоя …

Мы привели в статье полную таблицу коэффициентов теплопроводности. Показали, как рассчитывать необходимую толщину слоя строительных и отделочных материалов в соответствии с нормативами. Читателям останется лишь применить полученные знания на практике.

В общих чертах процесс теплопроводности характеризуется передачей тепловой энергии от более нагретых частиц твердого тела к менее нагретым. Процесс будет идти до тех пор, пока не наступит тепловое равновесие. Другими словами, пока не сравняются температуры.

Коэффициент теплопроводности является наиболее важным теплотехническим свойством строительных материалов — он характеризует способность материалов проводить тепловую энергию. На практике используются две группы методов испытаний для измерения теплопроводности как свойства материалов.

Принцип плоского источника тепла

Эти методы достаточно точны, но они отнимают много времени, и применение этого метода возможно только в случае образцов с точно определенными размерами, и они очень требовательны к подготовке образца. Нестационарные методы — ударные методы с использованием вторичных измерительных приборов. Стационарные методы.
. Для расчетов теплопередачи от плоского источника тепла мы исходим из приложения фундаментального уравнения Фурье для теплопроводности в виде.

Применительно к ограждающим конструкциям дома (стены, пол, потолок, крыша) процесс теплопередачи будет определяться временем, в течение которого температура внутри помещения сравняется с температурой окружающей среды.

Чем более продолжителен по времени будет этот процесс, тем помещение будет более комфортным по ощущениям и экономичным по эксплуатационным расходам.

Принцип нестационарного плоского измерительного оборудования

Зонд нестационарного измерительного прибора образует полуограниченную область с известными параметрами и термически чувствительную границу с плоским источником тепла на ее поверхности. В принципе этот метод основан на ударном «методе горячей проволоки», но в отличие от этого метода заменяет линейный источник тепла плоским источником тепла, который гарантирует приближение измеренной величины по всей поверхности испытательного зонда и исключает возможный эффект локальных неоднородностей материала.

Численно процесс переноса тепла характеризуется коэффициентом теплопроводности.
Физический смысл коэффициента показывает, какое количество тепла за единицу времени проходит через единицу поверхности. Т.е. чем выше значение этого показателя, тем лучше проводится тепло, значит, тем быстрее будет происходить процесс теплообмена.

Температура находится на измеренной границе, контролируемой с помощью контрольной термопары. Измеренные значения здесь хранятся и оцениваются. Выход источника тепла контролируется с помощью программного обеспечения для обеспечения оптимальной тепловой защиты на границе между зондом и испытанным материалом по теплотехническим параметрам испытуемого образца.

При оценке результатов измерений коэффициента теплопроводности нестационарным плоским измерительным оборудованием с использованием сравнительного метода мы обычно предполагаем сходство температурного курса при регулярном нагревании материалов. Следующий график формулирует типичный температурный курс при регулярном нагревании.

Понятие теплопроводности на практике

Таблица 1

Данный показатель выражают как коэффициент теплопроводности материалов. Таблица содержит уже измеренные значения для большинства материалов. Расчет производится по количеству тепловой энергии, прошедшей сквозь заданную площадь поверхности материала. Чем больше вычисленное значение, тем быстрее объект отдаст все свое тепло.

ЧИТАТЬ ДАЛЕЕ:  Эластичная штукатурка для фасадов плюсы и минусы фасадной отделки технология нанесения на osb и другие материалы

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Утепление на стадии проектирования является оптимальным, но не единственным решением. Не составляет трудности утеплить уже готовое здание путем проведения внутренних или наружных работ. Толщина слоя изоляции будет зависеть от выбранных материалов. Отдельные из них (к примеру, дерево, пенобетон) могут в некоторых случаях использоваться без дополнительного слоя термоизоляции. Главное, чтобы их толщина превышала 50 сантиметров.

Особенное внимание следует уделить утеплению кровли, оконных и дверных проемов, пола. Сквозь эти элементы уходит больше всего тепла. Зрительно это можно увидеть на фотографии в начале статьи.

Теплопотери дома

Эффективность многослойных конструкций

Комбинация конструкционного материала и теплоизоляционного
позволяет обеспечить прочность и снизить потерю тепловой энергии до оптимального уровня. Поэтому при проектировании стен при расчётах учитывается каждый слой будущей ограждающей конструкции.

Важно также учитывать плотность при строительстве дома и при его утеплении.

Плотность вещества – фактор, влияющий на его теплопроводность, способность задерживать в себе основной теплоизолятор – воздух.

Расчёт толщины стены зависит от следующих показателей:

  • плотности;
  • расчётной теплопроводности;
  • коэффициента сопротивления теплопередачи.

Согласно установленных норм, значение показателя сопротивления теплопередачи наружных стен должно быть не менее 3,2λ Вт/м °С.

Расчёт толщины стен из железобетона и прочих конструкционных материалов
представлен в таблице 2. Такие строительные материалы отличаются высокими несущими характеристиками, они долговечны, но в качестве тепловой защиты они неэффективны и требуют нерациональной толщины стены.

Таблица 2

Конструкционно-теплоизоляционные материалы способны подвергаться достаточно высоким нагрузкам, при этом значительно повышают теплотехнические и акустические свойства зданий в стеновых ограждающих конструкциях (таблица 3.1, 3.2).

Таблица 3.1

Таблица 3.2

Значительно повысить теплозащиту зданий и сооружений позволяют теплоизоляционные строительные материалы. Данные таблицы 4 показывают, что наименьшие значения коэффициента теплопроводности
имеют полимеры, минераловатные, плиты из природных органических и неорганических материалов.

Таблица 4

Задача выбора оптимальных материалов для строительства, конечно же, подразумевает более комплексный подход. Однако даже такие простые расчёты уже на первых этапах проектирования позволяют определить наиболее подходящие материалы и их количество.

Строительство каждого объекта лучше начинать с планировки проекта и тщательного расчета теплотехнических параметров. Точные данные позволит получить таблица теплопроводности строительных материалов. Правильное возведение зданий способствует оптимальным климатическим параметрам в помещении. А таблица поможет правильно подобрать сырье, которое будут использоваться для строительства.

Назначение теплопроводности

Теплопроводность является показателем передачи тепловой энергии от нагреваемых предметов в помещении к предметам с более низкой температурой. Процесс теплообмена производится, пока температурные показатели не уравняются. Для обозначения тепловой энергии используется специальный коэффициент теплопроводности строительных материалов.

Таблица поможет увидеть все требуемые значения. Параметр обозначает, сколько тепловой энергии пропускается через единицу площади в единицу времени. Чем больше данное обозначение, тем качественнее будет теплообмен. При возведении зданий необходимо применять материал с минимальным значением тепловой проводимости.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Коэффициент теплопроводности это такая величина, которая равна количеству теплоты, проходящей через метр толщины материала за час. Использование подобной характеристики обязательно для создания лучшей теплоизоляции. Теплопроводность следует учесть при подборе дополнительных утепляющих конструкций.

Что оказывает влияние на показатель теплопроводности?

Пористость определяет неоднородность структуры. При пропуске тепла через такие материалы процесс охлаждения незначительный;

Повышенное значение плотности влияет на тесные соприкосновения частиц, что способствует более быстрому теплообмену;

Повышенная влажность увеличивает данный показатель.

Использование значений коэффициента теплопроводности на практике.

Материалы представлены конструкционными и теплоизоляционными разновидностями. Первый вид обладает большими показателями теплопроводности. Они применяются для строительства перекрытий, ограждений и стен.

При помощи таблицы определяются возможности их теплообмена. Чтобы данный показатель был достаточно низким для нормального микроклимата в помещении стены из некоторых материалов должны быть особенно толстыми. Чтобы этого избежать, рекомендуется использовать дополнительные теплоизолирующие компоненты.

Показатели теплопроводности для готовых построек. Виды утеплений.

При создании проекта нужно учитывать все способы утечки тепла. Оно может выходить через стены и крышу, а также через полы и двери. Если вы неправильно проведете расчеты проектирования, то придется довольствоваться только тепловой энергией, полученной от отопительных приборов. Здания, построенные из стандартного сырья: камня, кирпича либо бетона нужно дополнительно утеплять.

Дополнительная теплоизоляция проводится в каркасных зданиях. При этом деревянный каркас придает жесткости конструкции, а утепляющий материал прокладывается в пространство между стойками. В зданиях из кирпича и шлакоблоков утепление производится снаружи конструкции.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Показатель теплопроводности оказывает влияние на качество теплоизолирующего процесса;

Влагопоглощение имеет большое значение при утеплении наружных элементов;

Толщина влияет на надежность утепления. Тонкий утеплитель помогает сохранить полезную площадь помещения;

Важна горючесть. Качественное сырье имеет способность к самозатуханию;

Термоустойчивость отображает способность выдерживать температурные перепады;

Экологичность и безопасность;

Звукоизоляция защищает от шума.

Минеральная вата устойчива к огню и экологична. К важным характеристикам относится низкая теплопроводность;

Пенопласт – это легкий материал с хорошими утеплительными свойствами. Он легко устанавливается и обладает влагоустойчивостью. Рекомендуется для применения в нежилых строениях;

Базальтовая вата в отличие от минеральной отличается лучшими показателями стойкости к влаге;

Пеноплэкс устойчив к влажности, повышенным температурам и огню. Имеет прекрасные показатели теплопроводности, прост в монтаже и долговечен;

Пенополиуретан известен такими качествами, как негорючесть, хорошие водоотталкивающие свойства и высокая пожаростойкость;

Экструдированный пенополистирол при производстве проходит дополнительную обработку. Обладает равномерной структурой;

Пенофол представляет из себя многослойный утепляющий пласт. В составе присутствует вспененный полиэтилен. Поверхность пластины покрывается фольгой для обеспечения отражения.

Для теплоизоляции могут применяться сыпучие типы сырья. Это бумажные гранулы или перлит. Они имеют стойкость к влаге и к огню. А из органических разновидностей можно рассмотреть волокно из древесины, лен или пробковое покрытие. При выборе, особое внимание уделяйте таким показателям как экологичность и пожаробезопасность.

ОБРАТИТЕ ВНИМАНИЕ! При конструировании теплоизоляции, важно продумать монтаж гидроизолирующей прослойки. Это позволит избежать высокой влажности и повысит сопротивляемость теплообмену.

Таблица теплопроводности строительных материалов: особенности показателей.

Таблица теплопроводности строительных материалов содержит показатели различных видов сырья, которое применяется в строительстве. Используя данную информацию, вы можете легко посчитать толщину стен и количество утеплителя.

Как использовать таблицу теплопроводности материалов и утеплителей?

В таблице сопротивления теплопередаче материалов представлены наиболее популярные материалы. Выбирая определенный вариант теплоизоляции важно учитывать не только физические свойства, но и такие характеристики как долговечность, цена и легкость установки.

Знаете ли вы, что проще всего выполнять монтаж пенооизола и пенополиуретана. Они распределяются по поверхности в виде пены. Подобные материалы легко заполняют полости конструкций. При сравнении твердых и пенных вариантов, нужно выделить, что пена не образует стыков.

Значения коэффициентов теплопередачи материалов в таблице.

При произведении вычислений следует знать коэффициент сопротивления теплопередаче. Данное значение является отношением температур с обеих сторон к количеству теплового потока. Для того чтобы найти теплосопротивление определенных стен и используется таблица теплопроводности.

Все расчеты вы можете провести сами. Для этого толщина прослойки теплоизолятора делится на коэффициент теплопроводности. Данное значение часто указывается на упаковке, если это изоляция. Материалы для дома измеряются самостоятельно. Это касается толщины, а коэффициенты можно отыскать в специальных таблицах.

Коэффициент сопротивления помогает выбрать определенный тип теплоизоляции и толщину слоя материала. Сведения о паропроницаемости и плотности можно посмотреть в таблице.

При правильном использовании табличных данных вы сможете выбрать качественный материал для создания благоприятного микроклимата в помещении. опубликовано

Факторы, влияющие на величину теплопроводности

В начале измерения принимается начальное стационарное состояние температуры. Измерительный датчик и образец образуют две полубесконечные области. Линейная часть кривой параметризуется используемой емкостью плоского источника и теплоизоляционными свойствами обоих смежных полупространств.

В общем случае расчет значения теплопроводности может быть выражен уравнением. Во время практических измерений результаты измерений на эталонных материалах были применены для выбора оптимального интервала измерения и оптимальной выходной мощности источника тепла в отношении максимизации результатов измерений точно и воспроизводимости.

  1. Пористость – наличие пор в структуре материала нарушает его однородность. При прохождении теплового потока часть энергии передается через объем, занятый порами и заполненный воздухом. Принято за отсчетную точку принимать теплопроводность сухого воздуха (0,02 Вт/(м*°С)). Соответственно, чем больший объем будет занят воздушными порами, тем меньше будет теплопроводность материала.
  2. Структура пор – малый размер пор и их замкнутый характер способствуют снижению скорости теплового потока. В случае использования материалов с крупными сообщающимися порами в дополнение к теплопроводности в процессе переноса тепла будут участвовать процессы передачи тепла конвекцией.
  3. Плотность – при больших значениях частицы более тесно взаимодействуют друг с другом и в большей степени способствуют передаче тепловой энергии. В общем случае значения теплопроводности материала в зависимости от его плотности определяются либо на основе справочных данных, либо эмпирически.
  4. Влажность – значение теплопроводности для воды составляет (0,6 Вт/(м*°С)). При намокании стеновых конструкций или утеплителя происходит вытеснение сухого воздуха из пор и замещение его каплями жидкости или насыщенным влажным воздухом. Теплопроводность в этом случае значительно увеличится.
  5. Влияние температуры на теплопроводность материала отражается через формулу:

λ=λо*(1 b*t), (1)

Определение коэффициента теплопроводности строительных материалов с использованием нестационарного плоского измерительного оборудования. Нестационарное плоское измерительное оборудование благодаря своей конструкции обладает многими выгодными свойствами. В этом аппарате можно легко и быстро измерить значение коэффициента теплопроводности в случае любого строительного материала.

Само измерение длится всего несколько секунд, и поэтому можно определить значение коэффициента теплопроводности в зависимости от влажности испытуемого образца. Плоский датчик обеспечивает возможность определения коэффициента теплопроводности значительно неоднородных материалов. Требования, касающиеся размера выборки, по сравнению с другими методами существенно меньше. По этим причинам можно определить коэффициент теплопроводности даже в части строительных изделий, поскольку со стандартными образцами тепловые технические свойства могут сильно отличаться от свойств конечных продуктов. Точность измерения. Как и в случае любого метода измерения, даже в случае нестационарного плоского измерительного прибора наибольшая ошибка исходит из тестового образца. Если поверхность испытываемого образца неравномерна.

  • Скорость измерения.
  • В отличие от классических методов этот метод несравненно быстрее.
  • Гибкость измерений.

Измерительное устройство может благодаря своим благоприятным свойствам применяться для определения измерения коэффициента теплопроводности в большом разнообразии материалов и изделий, например.

где, λо – коэффициент теплопроводности при температуре 0 °С, Вт/м*°С;

b – справочная величина температурного коэффициента;

t – температура.

  • При повышении данного показателя взаимодействие частиц материала становится прочнее. Соответственно, они будут передавать температуру быстрее. А это значит, что с повышением плотности материала улучшается передача тепла.
  • Пористость вещества. Пористые материалы являются неоднородными по своей структуре. Внутри них находится большое количество воздуха. А это значит, что молекулам и другим частицами будет сложно перемещать тепловую энергию. Соответственно, коэффициент теплопроводности повышается.
  • Влажность также оказывает влияние на теплопроводность. Мокрые поверхности материала пропускают большее количество тепла. В некоторых таблицах даже указывается расчетный коэффициент теплопроводности материала в трех состояниях: сухом, среднем (обычном) и влажном.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

Выбирая материал для утепления помещений, важно учитывать также условия, в которых он будет эксплуатироваться.

Теплопроводность материалов: параметры

Дать оценку качеству материала можно исходя из нескольких основополагающих характеристик. Первая из них – коэффициент теплопроводности, который обозначается символом «лямбда» (ι). Этот коэффициент показывает, какой объем теплоты за 1 час проходит через отрезок материала толщиной 1 метр и площадью 1 м² при условии, что разница между температурами среды на обеих поверхностях составляет 10°С.

Показатели коэффициента теплопроводности любых утеплителей зависят от множества факторов – от влажности, паропроницаемости, теплоемкости, пористости и других характеристик материала.

Влажность – это объем влаги, которая содержится в теплоизоляции. Вода отлично проводит тепло, и насыщенная ею поверхность будет способствовать выхолаживанию помещения. Следовательно, переувлажненный теплоизоляционный материал потеряет свои качества и не даст желаемого эффекта. И наоборот: чем большими водоотталкивающими свойствами он обладает, тем лучше.

Паропроницаемость – параметр, близкий к влажности. В числовом выражении он представляет собой объем водяного пара, проходящий через 1 м2 утеплителя за 1 час при соблюдении условия, что разность потенциального давления пара составляет 1Па, а температура среды одинакова.

При высокой паропроницаемости материал может увлажняться. В связи с этим при утеплении стен и перекрытий дома рекомендуется выполнить монтаж пароизоляционного покрытия.

Водопоглощение – способность изделия при соприкосновении с жидкостью впитывать ее. Коэффициент водопоглощения очень важен для материалов, которые используются для обустройства наружной теплоизоляции. Повышенная влажность воздуха, атмосферные осадки и роса могут привести к ухудшению характеристик материала.

Также не рекомендуется применять водопоглощающую изоляцию при отделке ванных комнат, санузлов, кухонь и других помещений с высоким уровнем влажности.

Пористость – выраженное в процентах количество воздушных пор от общего объема изделия. Различают поры закрытые и открытые, крупные и мелкие

Плотность – это одна из характеристик, влияющих на массу материала. Специальная таблица поможет определить оба этих параметра. Зная плотность, можно рассчитать, насколько увеличится нагрузка на стены дома или его перекрытия.

Теплоемкость – показатель, демонстрирующий, какое количество тепла готова аккумулировать теплоизоляция. Биостойкость – способность материала сопротивляться воздействию биологических факторов, например, патогенной флоры. Огнестойкость – противодействие изоляции огню, при этом данный параметр не стоит путать с пожаробезопасностью. Различают и другие характеристики, к которым относятся прочность, выносливость на изгиб, морозостойкость, износоустойчивость.

Также при выполнении расчетов нужно знать коэффициент U – сопротивление конструкций теплопередаче. Этот показатель не имеет никакого отношения к качествам самих материалов, но его нужно знать, чтобы сделать правильный выбор среди разнообразных утеплителей. Коэффициент U представляет собой отношение разности температур с двух сторон изоляции к объему проходящего через нее теплового потока. Чтобы найти теплосопротивление стен и перекрытий, нужна таблица, где рассчитана теплопроводность строительных материалов.

Произвести необходимые вычисления можно и самостоятельно. Для этого толщину слоя материала делят на коэффициент его теплопроводности. Последний параметр — если речь идет об изоляции — должен быть указан на упаковке материала. В случае с элементами конструкции дома все немного сложнее: хотя их толщину можно измерить самостоятельно, коэффициент теплопроводности бетона, дерева или кирпича придется искать в специализированных пособиях.

Что такое теплопроводность строительных материалов таблица. Теплопроводность и другие характеристики строительных материалов в цифрах. Если задумано индивидуальное строительство

При этом часто для изоляции стен, потолка и пола в одном помещении используются материалы разного типа, поскольку для каждой плоскости коэффициент теплопроводности нужно рассчитывать отдельно.

Конструкционные материалы применяются для возведения ограждающих конструкций (стен, перегородок, перекрытий). Они отличаются большими значениями теплопроводности.

Нестационарные методы определения коэффициента теплопроводности используются, в частности, в тех случаях, когда применение метода сляба не может быть применено. Более низкая надежность измерения компенсируется, в частности, быстрой реализацией эксперимента. Оценка эксперимента быстро и может быть алгоритмизирована для онлайн-обработки компьютером.

В этой статье приведены данные по теплопроводности для выбора общих материалов. Теплопроводность измеряет способность материалов пропускать тепло через него через проводимость. Теплопроводность материала сильно зависит от состава и структуры. Вообще говоря, плотные материалы, такие как металлы и камень, являются хорошими проводниками тепла, в то время как вещества с низкой плотностью, такие как газ и пористая изоляция, являются плохими проводниками тепла. Теплопроводность материалов требуется для анализа при изучении теплообмена в системе.

Таблица 1

Подставляя в формулу (2) данные, взятые из нормативной документации, и данные из Таблицы 1, можно получить требуемую толщину стен для конкретного климатического района.

При выполнении стен только из конструкционных материалов без использования теплоизоляции их необходимая толщина (в случае использования железобетона) может достигать нескольких метров. Конструкция в этом случае получится непомерно большой и громоздкой.

В статье. В следующих таблицах показаны теплопроводности для обычных веществ. Строительные материалы или строительные материалы являются основным требованием в этот современный век технологии. Существует много типов строительных материалов, используемых для различных строительных работ.

Свойства строительных материалов

Для того чтобы материал рассматривался как строительный материал, он должен обладать необходимыми инженерными свойствами, подходящими для строительных работ. Эти свойства строительных материалов отвечают за его качество и мощность и помогают решать их применение.

Допускают возведение стен без использования дополнительного утепления, пожалуй, только пенобетон и дерево. И даже в этом случае толщина стены достигает полуметра.

Основной их диапазон лежит в пределах от 0,03 до 0,07 Вт/(м*°С). Наиболее распространенные материалы – это экструдированный пенополистирол, минеральная вата, пенопласт, стекловата, утепляющие материалы на основе пенополиуретана. Их использование позволяет значительно снизить толщину ограждающих конструкций.

Процесс передачи энергии от более нагретой части тела к менее нагретой называется теплопроводностью. Числовое значение такого процесса отражает коэффициент теплопроводности материала. Это понятие является очень важным при строительстве и ремонте зданий. Правильно подобранные материалы позволяют создать в помещении благоприятный микроклимат и сэкономить на отоплении существенную сумму.

Пористость строительных материалов

Пористость дает объем материала, занимаемого порами. Это отношение объема пор к объему материала. Пористость влияет на многие свойства, такие как теплопроводность, прочность, насыпная плотность, долговечность и т.д.

Долговечность строительных материалов

Свойство материала противостоять совместному действию атмосферных и других факторов известно как долговечность материала. Если материал более прочный, он будет полезен для более длительного срока службы. Стоимость обслуживания материала зависит от долговечности.

Бетоны

Коэффициент теплопроводности материала позволяет использовать последний для постройки гаражей, сараев, летних домиков, бань и других сооружений. В данную группу можно отнести:

  • Керамзитобетон, показатели которого зависят от его вида. Полнотелые блоки не имеют пустот и отверстий. С пустотами внутри изготавливают пустотелые блоки, которые менее прочные, нежели первый вариант. Во втором случае теплопроводность будет ниже. Если рассматривать общие цифры, то составляет 500-1800кг/м3. Его показатель находится в интервале 0,14-0,65Вт/м*К.
  • Газобетон, внутри которого образуются поры размером 1-3 миллиметра. Такая структура определяет плотность материала (300-800кг/м 3). За счет этого коэффициент достигает 0,1-0,3 Вт/м*К.
Материал ρ0, кг/м³ λ0, Вт/(м·°С) λ (А), Вт/(м·°С) λ (Б), Вт/(м·°С) μ, мг/(м·ч·Па)
1 Туфобетон 1800 0,64 0,87 0,99 0,09
2 То же 1600 0,52 0,7 0,81 0,11
3 « 1400 0,41 0,52 0,58 0,11
4 « 1200 0,32 0,41 0,47 0,12
5 Бетон на литоидной пемзе 1600 0,52 0,62 0,68 0,075
6 То же 1400 0,42 0,49 0,54 0,083
7 « 1200 0,30 0,4 0,43 0,098
8 « 1000 0,22 0,3 0,34 0,11
9 « 800 0,19 0,22 0,26 0,12
10 Бетон на вулканическом шлаке 1600 0,52 0,64 0,7 0,075
11 То же 1400 0,41 0,52 0,58 0,083
12 « 1200 0,33 0,41 0,47 0,09
13 « 1000 0,24 0,29 0,35 0,098
14 « 800 0,20 0,23 0,29 0,11
Бетоны на искусственных пористых заполнителях
1 Керамзитобетон на керамзитовом песке 1800 0,66 0,80 0,92 0,09
2 То же 1600 0,58 0,67 0,79 0,09
3 « 1400 0,47 0,56 0,65 0,098
4 « 1200 0,36 0,44 0,52 0,11
5 « 1000 0,27 0,33 0,41 0,14
6 « 800 0,21 0,24 0,31 0,19
7 « 600 0,16 0,2 0,26 0,26
8 « 500 0,14 0,17 0,23 0,3
9 Керамзитобетон на кварцевом песке с умеренной (до 12 %) поризацией 1200 0,41 0,52 0,58 0,075
10 То же 1000 0,33 0,41 0,47 0,075
11 « 800 0,23 0,29 0,35 0,075
12 Керамзитобетон на перлитовом песке 1000 0,28 0,35 0,41 0,15
13 То же 800 0,22 0,29 0,35 0,17
14 Керамзитобетон беспесчаный 700 0,135 0,145 0,155 0,145
15 То же 600 0,130 0,140 0,150 0,155
16 « 500 0,120 0,130 0,140 0,165
17 « 400 0,105 0,115 0,125 0,175
18 « 300 0,095 0,105 0,110 0,195
19 Шунгизитобетон 1400 0,49 0,56 0,64 0,098
20 То же 1200 0,36 0,44 0,5 0,11
21 « 1000 0,27 0,33 0,38 0,14
22 Перлитобетон 1200 0,29 0,44 0,5 0,15
23 То же 1000 0,22 0,33 0,38 0,19
24 « 800 0,16 0,27 0,33 0,26
25 Перлитобетон 600 0,12 0,19 0,23 0,3
26 Бетон на шлакопемзовом щебне 1800 0,52 0,63 0,76 0,075
27 То же 1600 0,41 0,52 0,63 0,09
28 « 1400 0,35 0,44 0,52 0,098
29 « 1200 0,29 0,37 0,44 0,11
30 « 1000 0,23 0,31 0,37 0,11
31 Бетон на остеклованном шлаковом гравии 1800 0,46 0,56 0,67 0,08
32 То же 1600 0,37 0,46 0,55 0,085
33 « 1400 0,31 0,38 0,46 0,09
34 « 1200 0,26 0,32 0,39 0,10
35 « 1000 0,21 0,27 0,33 0,11
36 Мелкозернистые бетоны на гранулированных доменных и ферросплавных (силикомарганца и ферромарганца) шлаках 1800 0,58 0,7 0,81 0,083
37 То же 1600 0,47 0,58 0,64 0,09
38 « 1400 0,41 0,52 0,58 0,098
39 « 1200 0,36 0,49 0,52 0,11
40 Аглопоритобетон и бетоны на заполнителях из топливных шлаков 1800 0,7 0,85 0,93 0,075
41 То же 1600 0,58 0,72 0,78 0,083
42 « 1400 0,47 0,59 0,65 0,09
43 « 1200 0,35 0,48 0,54 0,11
44 « 1000 0,29 0,38 0,44 0,14
45 Бетон на зольном обжиговом и безобжиговом гравии 1400 0,47 0,52 0,58 0,09
46 То же 1200 0,35 0,41 0,47 0,11
47 « 1000 0,24 0,3 0,35 0,12
48 Вермикулитобетон 800 0,21 0,23 0,26
49 То же 600 0,14 0,16 0,17 0,15
50 « 400 0,09 0,11 0,13 0,19
51 « 300 0,08 0,09 0,11 0,23
Бетоны особо легкие на пористых заполнителях и ячеистые
1 Полистиролбетон на портландцементе (ГОСТ Р 51263) 600 0,145 0,175 0,20 0,068
2 То же 500 0,125 0,14 0,16 0,075
3 « 400 0,105 0,12 0,135 0,085
4 « 350 0,095 0,11 0,12 0,09
5 « 300 0,085 0,09 0,11 0,10
6 « 250 0,075 0,085 0,09 0,11
7 « 200 0,065 0,07 0,08 0,12
8 « 150 0,055 0,057 0,06 0,135
9 Полистиролбетон модифицированный на шлакопортландцементе 500 0,12 0,13 0,14 0,075
10 То же 400 0,09 0,10 0,11 0,08
11 « 300 0,08 0,08 0,09 0,10
12 « 250 0,07 0,07 0,08 0,11
13 « 200 0,06 0,06 0,07 0,12
14 Газо- и пенобетон на цементном вяжущем 1000 0,29 0,38 0,43 0,11
15 То же 800 0,21 0,33 0,37 0,14
16 « 600 0,14 0,22 0,26 0,17
17 « 400 0,11 0,14 0,15 0,23
18 Газо- и пенобетон на известняковом вяжущем 1000 0,31 0,48 0,55 0,13
19 То же 800 0,23 0,39 0,45 0,16
20 « 600 0,15 0,28 0,34 0,18
21 « 500 0,13 0,22 0,28 0,235
22 Газо- и пенозолобетон на цементном вяжущем 1200 0,37 0,60 0,66 0,085
23 То же 1000 0,32 0,52 0,58 0,098
24 « 800 0,23 0,41 0,47 0,12
Оцените статью
MALIVICE.RU
Adblock
detector