Шаговый двигатель устройство принцип работы типы схемы подключения

Конфигурация системы

Чаще всего это оборудование управляется специальной электронной схемой. Питается оно только от источника переменного тока. Такие двигатели часто используются в схемах, где требуется управление частотой вращения. Это позволяет избежать необходимости использования дорогого и сложного контура обратной связи, да и защита электродвигателя становится проще (требуется только предусмотреть быстрое обесточивание).

Данный принцип работы применяют в схемах с разомкнутой связью. Следует помнить, что указанная схема (без контура обратной связи) выгодна с экономической точки зрения, но у нее есть ряд существенных ограничений.

Так, поворот ротора является достаточно нестабильным, колебательным, отчего частота вращения и прочие характеристики движения ни в коем случае не могут быть настолько же точными, каковыми они являются в двигателях постоянного тока с контуром обратной связи. Для расширения сферы применения шагового двигателя требуется изыскивать способы снижения вибрации.

Чтобы лучше понимать устройство шагового двигателя и принцип его работы, можно рассмотреть схему функционирования прибора под его управлением, который лет 20 назад использовался для изготовления перфокарт. Для этой цели повсеместно применяли трех- и четырехфазные ШД. Сейчас мы рассмотрим схему работы первого.

Мы уже упоминали, что ротор двигателя поворачивается на определенное расстояние в ответ на каждый управляющий импульс. Значение этого поворота выражается в градусах и называется шагом. Логическая цепь включается во время получения сигнала, после чего сразу же определяет нужную для задействования фазу.

После этого она отправляет свой сигнал на инвертор, отвечающий за значение тока, который используют шаговые двигатели. Характеристики этого оборудования предполагают использование различных типов управляющих схем. Как правило, последние монтируются из широко распространенных транзисторов, хотя сравнительно недавно для этой цели использовали

При высоком ее выходном потенциале происходит автоматическое возбуждение нужной фазы обмотки (первой, к примеру). Если потенциал снижается, происходит автоматическое отключение данной фазы. Так реализована защита электродвигателя.

Фазы обозначают порядковыми номерами 1, 2, 3 и т.д. либо буквами А, В, С и т.д. Последний вариант используется только в случае некоторых двухфазных двигателей. Таким образом, в каждый конкретный момент времени возбуждена только одна фаза из двух, трех или четырех имеющихся (в зависимости от типа двигателя).

Индукторные (гибридные шаговые двигатели

Есть и другой тип шагового двигателя, частично использующий тот же принцип. Гибридные модели работают с применением как реактивного, так и

Ротор имеет практически ту же конструкцию, что и у реактивного ШД, но вот обмотки производятся по несколько иной схеме. Дело в том, что на каждом полюсе обмотка есть только у одной катушки (трехфазные ШД). Нетрудно догадаться, что в четырехфазных моделях намотано уже две катушки. Намотка ведется по бифилярной схеме. Особенность в том, что при возбуждении на катушках создается магнитное поле разных полярностей (биполярный шаговый двигатель).

Стремление совместить преимущества активного шагового двигателя (большой удельный синхронизирующий момент на единицу объема, наличие фиксирующего момента) и реактивного шагового двигателя (малая величина шага) привело к созданию гибридных индукторных шаговых двигателей.

В настоящее время имеется большое число различных конструкций индукторных двигателей, различающихся числом фаз, размещением обмоток, способом фиксации ротора при обесточенном статоре и т.д.

Во всех конструкциях индукторных шаговых двигателей вращающий момент создается за счет взаимодействия магнитного поля, создаваемого обмотками статора и постоянного магнита в зубчатой структуре воздушного зазора.

По сравнению с шаговым двигателем реактивного типа у индукторного шагового двигателя при одинаковой величине шага — больший синхронизирующий момент, лучшие энергетические и динамические характеристики.

При автоматизации производственных процессов часто бывает необходимо перемещать объекты в плоскости (например, в графопостроителях современных ЭВМ и т. д.). В этом случае приходится применять преобразователь вращательного движения в поступательное с помощью кинематического механизма.

Линейные шаговые двигатели преобразуют импульсную команду непосредственно в линейное перемещение. Это позволяет упростить кинематическую схему различных электроприводов.

Статор линейного шагового двигателя представляет собой плиту из магнитомягкого материала. Подмагничивание магнитопроводов производится постоянным магнитом. 

Схема, иллюстрирующая работу линейного шагового двигателя

Зубцовые деления статора и подвижной части двигателя равны. В пределах одного магнитопровода ротора они сдвинуты на половину зубцового деления t/2. Зубцовые деления второго магнитопровода сдвинуты относительно соответствующих параметров первого магнитопровода на четверть зубцового деления t/4. Магнитное сопротивление потоку подмагничивания не зависит от положения подвижной части.

Принцип действия линейного шагового двигателя не отличается от принципа действия индукторного шагового двигателя.

Разница — лишь в том, что при взаимодействии потока обмоток управления с переменной составляющей потока подмагничивания создается не момент, а сила FС, которая перемещает подвижную часть таким образом, чтобы против зубцов данного магнитопровода находились зубцы статора, то есть на четверть зубцового деления t/4.

  • ΔXш = tz / Кt
  • где Kt — число тактов схемы управления.
  • Для перемещения объекта в плоскости по двум координатам применяются двухкоординатные линейные шаговые двигатели.

В линейных шаговых двигателях применяют магнитовоздушную подвеску. Ротор притягивается к статору силами магнитного притяжения полюсов ротора.

Через специальные форсунки под него нагнетается сжатый воздух, что создает силу отталкивания ротора от статора. Таким образом, между ними создается воздушная подушка, и ротор подвешивается над статором с минимальным воздушным зазором.

При этом обеспечиваются минимальное сопротивление движению ротора и высокая точность позиционирования.

Режим отработки единичных шагов соответствует частоте импульсов управления, подаваемых на обмотки шагового двигателя, при которой шаговый двигатель отрабатывает до прихода следующего импульса заданный угол вращения. Это значит, что в начале каждого шага угловая скорость вращения двигателя равна 0.

При этом возможны колебания углового вала двигателя относительно установившегося значения. Эти колебания обусловлены запасом кинетической энергии, которая была накоплена валом двигателя при отработке угла.

Кинетическая энергия преобразуется в потери: механические, магнитные и электрические. Чем больше величина перечисленных потерь, тем быстрее заканчивается переходный процесс отработки единичного шага двигателем.

Процесс отработки шагов шаговым двигателем

В процессе пуска ротор может отставать от потока статора на шаг и более; в результате может быть расхождение между числом шагов ротора и потоком статора.

Основными характеристиками шагового двигателя являются: шаг, предельная механическая характеристика и приемистость.

Предельная механическая характеристика — это зависимость максимального синхронизирующего момента от частоты управляющих импульсов.

Предельная механическая характеристика шагового двигателя

Шаговый двигатель в мастерской

Приемистость — это наибольшая частота управляющих импульсов, при которой не происходит потери или добавления шага при их отработке. Она является основным показателем переходного режима шагового двигателя. Приемистость растет с увеличением синхронизирующего момента, а также с уменьшением шага, момента инерции вращающихся (или линейно перемещаемых) частей и статического момента сопротивления.

Предельная динамическая характеристика шагового двигателя

ЧИТАТЬ ДАЛЕЕ:  Как почистить газовую колонку Bosch своими руками инструктаж по чистке основных узлов

Приемистость падает с увеличением нагрузки.

Шаговый двигатель: принцип работы, конструкция и управление

На один инкремент количество шагов больше четырех приходится в каких-то производственных линиях, конвейерах. Когда данные с запоминающего устройства (внутренняя флеш-память, жесткий диск компьютера) отправляются к контроллеру, выполняются они блок за блоком. Каждый из них содержит строго определенное количество символов (32, 48 или 64), причем в разных системах и при различных назначениях устройства эта цифра может серьезно варьироваться.

Неудивительно, что в последние годы стали распространены самоделки на основе микрокомпьютера Arduino. Шаговый двигатель в такой конструкции идеален, так как в такой связке его можно приспособить как в качестве силовой установки для игрушки, так и для довольно сложного промышленного оборудования.

Блок данных перед его использованием переносится в полупроводниковую память на контроллере, после чего движение начнется в соответствии с инструкциями, которые были записаны в первом блоке информации (перед тем как подключить электродвигатель, обязательно нужно выяснить эти характеристики).

После выполнения инструкций система начинает считывать второй массив информации. Если каждое движение состоит из множества мелких шагов, то перед основным контроллером необходимо монтировать дополнительный каскад. Чаще всего его функции выполняются входным контроллером. Он отправляет данные на второй управляющий контур с каким-то интервалом, заданным системой (Arduino). Шаговый двигатель в этом случае защищен от перегрузки запросами.

Как и двигатель постоянного тока, описанный в предыдущей статье, шаговые двигатели также являются электромеханическими исполнительными механизмами, которые преобразуют импульсный цифровой входной сигнал в дискретный (инкрементальный) механический ход, широко используются в промышленных системах управления.

Как следует из названия, шаговый двигатель не вращается непрерывно, как обычный двигатель постоянного тока, а движется дискретными «шагами» или «приращениями», причем угол каждого вращательного движения или шага зависит от числа полюсов статора и ротора. зубья имеет шаговый мотор.

Шаговый двигатель устройство принцип работы типы схемы подключения

Из-за их дискретной шаговой операции шаговые двигатели могут легко вращаться за конечную долю оборота за раз, например, 1,8, 3,6, 7,5 градусов и т.д. Так, например, давайте предположим, что шаговый двигатель совершает один полный оборот 360 o ровно за 100 шагов.

Тогда угол шага для двигателя задается как 360 градусов / 100 шагов = 3,6 градуса за шаг. Это значение обычно известно как Шаг угла.

Существует три основных типа шагового двигателя: переменное сопротивление, постоянный магнит и гибрид (своего рода комбинация обоих). Шаговый двигатель особенно хорошо подходит для устройств, требующих точного позиционирования и повторяемость с быстрой реакцией на запуск, остановка, реверс и регулировка скорости и другой ключевой особенностью шагового двигателя является его способность удерживать заряд ровно после достижения требуемого положения.

Как правило, шаговые двигатели имеют внутренний ротор с большим количеством «зубьев» постоянного магнита с рядом электромагнитных «зубьев», установленных на статоре. Электромагниты статоров поляризованы и деполяризованы последовательно, заставляя ротор вращаться по одному «шагу» за раз.

Современные многополюсные, многозубые шаговые двигатели имеют погрешность менее 0,9 градуса на шаг (400 импульсов на оборот) и в основном используются для высокоточных систем позиционирования, подобных тем, которые используются для магнитных головок в дисководе гибких дисков / жестких дисках, принтеры / плоттеры или роботизированные устройства.

В нашем простом примере шагового двигателя с переменным сопротивлением выше, двигатель состоит из центрального ротора окружен четырьмя электромагнитными катушками, помеченных A, B, C и D. Все катушки с одной и той же буквой соединены вместе, так что при подаче питания, скажем, катушек, помеченных буквой A, магнитный ротор выравнивается с этим набором катушек.

Подавая мощность на каждый набор катушек, в свою очередь, можно заставить ротор вращаться или «переходить» из одного положения в другое на угол, определяемый конструкцией угла его шага, и при последовательном возбуждении катушек ротор будет производить вращение (движение).

Драйвер шагового двигателя управляет как углом шага, так и скоростью двигателя, запитывая полевые катушки в установленной последовательности, например, « ADCB, ADCB, ADCB, A… » и т.д., ротор будет вращаться в одном направлении (вперед) и посредством при изменении последовательности импульсов на « ABCD, ABCD, ABCD, A… » и т. д. ротор будет вращаться в противоположном направлении (назад).

Таким образом, в нашем простом примере, приведенном выше, шаговый двигатель имеет четыре катушки, что делает его 4-фазным двигателем с числом полюсов на статоре восемь (2 x 4), которые расположены с интервалом 45 градусов. Число зубьев на роторе составляет шесть, которые расположены на расстоянии 60 градусов друг от друга.

Тогда есть 24 (6 зубьев х 4 катушек) возможных положений или «ступеней», чтобы ротор совершил один полный оборот. Следовательно, вышеуказанный угол шага равен: 360 o / 24 = 15 o .

Очевидно, что чем больше зубьев ротора и / или катушек статора, тем лучше контроль и меньший угол шага. Кроме того, при подключении электрических катушек двигателя в различных конфигурациях возможны полные, половинные и микрошаговые углы. Однако для достижения микроперехода шаговый двигатель должен приводиться в действие (квази) синусоидальным током, который дорог в реализации.

Также возможно контролировать скорость вращения шагового двигателя, изменяя временную задержку между цифровыми импульсами, подаваемыми на катушки (частоту), чем больше задержка, тем медленнее скорость для одного полного оборота. Подавая на двигатель фиксированное количество импульсов, вал двигателя вращается на заданный угол.

Преимущество использования импульса с задержкой по времени заключается в том, что не требуется никакой дополнительной обратной связи, поскольку путем подсчета количества импульсов, подаваемых на двигатель, конечное положение ротора будет точно известно. Эта реакция на заданное количество цифровых входных импульсов позволяет шаговому двигателю работать в «системе с разомкнутым контуром», что делает его более простым и дешевым в управлении.

Например, предположим, что наш шаговый двигатель имеет угол наклона 3,6 градуса на шаг. Чтобы повернуть двигатель на угол, скажем, 216 градусов, а затем снова остановиться в требуемом положении, потребуется всего: 216 градусов / (3,6 градуса / шаг) = 80 импульсов, приложенных к катушкам статора.

Имеется много интегральных схем контроллера шагового двигателя, которые могут контролировать скорость шага, скорость вращения и направление двигателя. Одним из таких контроллеров является SAA1027, который имеет все необходимые встроенные счетчики и преобразователи кода и может автоматически подключать 4 полностью контролируемых мостовых выхода к двигателю в правильной последовательности.

Направление вращения также может быть выбрано вместе с одношаговым режимом или непрерывным (бесступенчатым) вращением в выбранном направлении, но это накладывает некоторую нагрузку на контроллер. При использовании 8-битного цифрового контроллера возможны также 256 микрошагов за шаг.

ЧИТАТЬ ДАЛЕЕ:  Мягкая кровля: как покрыть крышу своими руками

В данной статье мы рассмотрим шаговый двигатель постоянного тока, подробно разберем принцип работы, конструкцию и управление, а так же разберем один из чипов управления.

Для работы практически всех электрических приборов, необходимы специальные приводные механизмы. Предлагаем рассмотреть, что такое шаговый двигатель, его конструкцию, принцип работы и схемы подключения.

Шаговый двигатель представляет собой электрическую машину, предназначенную для преобразования электрической энергии сети в механическую энергию. Конструктивно состоит из обмоток статора и магнитомягкого или магнитотвердого ротора.

Отличительной особенностью шагового двигателя является дискретное вращение, при котором заданному числу импульсов соответствует определенное число совершаемых шагов.

Наибольшее применение такие устройства получили в станках с ЧПУ, робототехнике, устройствах хранения и считывания информации.

В отличии от других типов машин шаговый двигатель совершает вращение не непрерывно, а шагами, от чего и происходит название устройства. Каждый такой шаг составляет лишь часть от его полного оборота. Количество необходимых шагов для полного вращения вала будет отличаться, в зависимости от схемы соединения, марки двигателя и способа управления.

К преимуществам эксплуатации шагового двигателя можно отнести:

  • В шаговых электродвигателях угол поворота соответствует числу поданных электрических сигналов, при этом, после остановки вращения сохраняется полный момент и фиксация;
  • Точное позиционирование – обеспечивает 3 – 5% от установленного шага, которая не накапливается от шага к шагу;
  • Обеспечивает высокую скорость старта, реверса, остановки;
  • Отличается высокой надежностью за счет отсутствия трущихся компонентов для токосъема, в отличии от коллекторных двигателей;
  • Для позиционирования шаговому двигателю не требуется обратной связи;
  • Может выдавать низкие обороты для непосредственно подведенной нагрузки без каких-либо редукторов;
  • Сравнительно меньшая стоимость относительно тех же сервоприводов;
  • Обеспечивается широкий диапазон управления скоростью оборотов вала за счет изменения частоты электрических импульсов.

К недостаткам применения шагового двигателя относятся:

  • Может возникать резонансный эффект и проскальзывание шагового агрегата;
  • Существует вероятность утраты контроля из-за отсутствия обратной связи;
  • Количество расходуемой электроэнергии не зависит от наличия или отсутствия нагрузки;
  • Сложности управления из-за особенности схемы

Шаг и инкремент

Наиболее простым вариантом является подача одиночных импульсов от управляющей схемы. В этом случае, к примеру, двигатель за один раз поворачивает ведущую звездочку конвейера на какое-то расстояние вперед. Следует заметить, что при подаче массивного механизма вперед только на один шаг еще более усугубляется проблема вибрации, да и значительная инерция дает о себе знать.

В таких случаях куда более оправданно использовать шаговый двигатель, который может за один управляющий импульс делать несколько движений. Также не помешает использовать звездочку с более мелкими зубьями. К слову, каждое такое движение называется инкрементом.

Шаговый двигатель устройство принцип работы типы схемы подключения

В описываемых нами случаях инкремент равен одному и нескольким шагам соответственно. После каждого цикла двигатель на какое-то время останавливается, после чего все повторяется сначала. Это называется инкрементным движением и инкрементным управлением соответственно.

Если одно движение выполняется за несколько шагов (о чем мы говорили выше), причем колебаний ротора может и не быть. Когда движение одношаговое, колебания приходится гасить при помощи специального электронного устройства. Вообще шаговые двигатели (характеристики которых мы рассматриваем) относятся к наукоемким устройствам, для их работы требуется много сложной электронной «начинки».

Схема подключения шаговых двигателей

Шаговый двигатель, биполярный или униполярный, представляет собой электрическое устройство постоянного тока, разделяющее оборот на определённое количество шагов. Количество и величина шагов задаётся специальным устройством, именуемым контроллер шагового двигателя.

Схема шаговый двигатель контроллер шагового двигателя широко применяется в самых различных механизмах, от бытовой техники до ЧПУ.

ШД обеспечивает стабильную и бесперебойную работу оборудования, частью которого он является, однако прежде чем начать работу, его необходимо правильно подключить.

В общем и целом процесс подключения шагового двигателя не является затруднительным. В первую очередь нужно определить, какой тип ШД используется. Для этого следует обратить внимание на то, сколькими проводами снабжён электропривод.  В зависимости от типа, шаговый двигатель может иметь 4, 5, 6 или 8 проводов.

Шаговый двигатель с 4 проводами может использоваться совместно только с биполярными устройствами. Каждая из двух фазных обмоток такого электродвигателя имеет пару проводов с непрерывной связью. Драйвер ШД в данном случае подключается пошагово.

Шаговый двигатель, оснащённый 6-ю или 8-ю проводами, помимо пары проводов для каждой из обмоток имеет также центр-кран для каждой из них. Такой электродвигатель считается униполярным и может быть подключён как к биполярным, так и к униполярным устройствам.

Если же подключение необходимо произвести к биполярному оборудованию, используются один конец провода и один центральный кран для каждой из обмоток.

Шаговый двигатель с 5-ю проводами схож с шестипроводным, однако центральные клеммы такого электродвигателя соединяются внутри сплошным кабелем, после чего выводятся к одному проводу.

Разделение проводов в таком механизме – довольно трудоёмкий процесс, который очень сложно произвести без разрывов.

Наиболее безопасным и эффективным выходом из ситуации при подключении такого прибора является определение центра провода с последующим соединением его с другими проводниками.

Стандартной схемой, использующейся для подключения 4-выводного биполярного ШД к драйверу или контроллеру является подключение первой обмотки к разъёмам А и А*, а второй – непосредственно к контроллеру через разъёмы B и B*. Разъёмы контроллера Dir и Step при таком методе подключения не используются; программное управление осуществляется при помощи генератора импульсов.

А сейчас нами будет рассмотрено простейшее подключение шагового двигателя на примере модели ЕМ-178, которая повсеместно используется в промышленных принтерах.

Фаза 0

Белый контроллер

Фаза 1

Оранжевый

Фаза 2

Выполняется подключение шагового двигателя к красному контроллеру

Фаза 3

Подключается к синему разъему

Общий « » питания

Коричневый контроллер

Расписать работу более масштабно попросту не получится, так как существуют миллионы самых разнообразных моделей, характеристики которых имеют существенные различия.

В настоящее время используются различные типы электродвигателей этой конструкции. В статье мы обсудим самые распространенные.

   Разные шаговые двигатели могут иметь разное количество проводов, как правило, 4, 5, 6, или 8. 4-х проводные линии могут поддержать только биполярные шаговые двигатели, поскольку у них нет центрального провода.

5-ти и 6-ти проводные механизмы могут быть использованы как для однополярного, так и биполярного шагового двигателя, в зависимости от того, используется центральный провод на каждой из катушек или нет. 5-ти проводная конфигурация подразумевает, что центральные провода на два комплекта катушек соединены внутри между собой.

Чтобы управлять шаговым двигателем необходим контроллер. Контроллер — схема, которая подает напряжение к любой из четырех катушек статора. Схемы управления достаточно сложны, по сравнению с обычными электромоторчиками, и имеют много особенностей. Подробно рассматривать тут мы их не будем, а просто приведём фрагмент популярного контроллера на ULN2003A.

   В общем шаговые двигатели являются отличным способом для того, чтобы повернуть что-то в точный размер угла с большим количеством крутящего момента. Другое преимущество их в том, что скорость вращения может быть достигнута почти мгновенно при изменении направления вращения на противоположное.

ЧИТАТЬ ДАЛЕЕ:  Монтаж металлочерепицы своими руками: поэтапный монтаж кровли из металлочерепицы

Некоторая специфика использования ШД

S = 360/θS, где S – шаговое число, θ – угол шага (угол поворота).

В большинстве случаев привод шагового двигателя может выполнять 96, 128 или 132 шага за один оборот. Четырехфазные модели иногда имеют значение в 200. Редкие виды прецизионных двигателей за один только оборот могут сделать сразу 500 или 1000 шагов. Впрочем, для простых разновидностей это недостижимо, так как у них угол поворота равен 90, 45 или 15°.

— Высокая точность частоты вращения. Именно этот параметр и определяет общее качество прибора. Вы уже знаете, что работа шагового двигателя предполагает его остановку и фиксацию в определенном положении после выполнения блока данных. Разумеется, обычная механика однозначно говорит нам, что из-за инерции, силы трения и прочих факторов возможны всяческие отклонения от заданных параметров.

Борьба с нежелательными явлениями

Зазор между роторными и статорными зубцами всегда делается минимальным для увеличения жесткости фиксации. Сама точность позиционирования зависит от характеристик только лишь инвертора, так как прочие факторы на нее влияют в гораздо меньшей степени.

А сейчас необходимо рассмотреть ряд важных характеристик и понятий, таких, как максимальный статический момент, положения «мертвого» ротора, а также точность позиционирования всех этих положений. Для определения вышеперечисленных терминов существует сразу две общепринятых распространенных концепции.

Максимальный статический эффект

Как мы уже и говорили, он имеет сразу два положения:

  • Удерживающий. Это максимально допустимый эффект, который теоретически может быть приложен к валу уже возбужденного шагового двигателя без возникновения движения.
  • Фиксирующий. Соответственно, это также максимальный статический эффект, который теоретически может быть приложен к валу невозбужденного двигателя без возникновения последующего вращения.

Чем удерживающий момент выше, тем ниже вероятность возникновения погрешностей позиционирования, вызываемых непрогнозируемой нагрузкой (отказали конденсаторы для электродвигателей, например). Полный фиксирующий момент возможен только в тех моделях двигателей, в которых используются постоянные магниты.

«Мертвые» положения ротора

Существует сразу три положения, в которых ротор полностью останавливается:

  • Положение равновесия. В нем происходит полная остановка возбужденного шагового двигателя.
  • Фиксация. Также состояние, в котором останавливается ротор. Но используется это понятие только в отношении тех двигателей, у которых в конструкции имеется постоянный магнит.
  • В современных моделях шаговых двигателей, которые соответствуют всем нормам экологической и энергетической безопасности, при остановке ротора полностью обесточивается и обмотка.

О точности позиционирования

Наконец, поговорим о важнейшем понятии. Речь идет о точности позиционирования. Можно догадаться, насколько оно важно при работе сложного промышленного оборудования. Различают два важнейших термина:

  • Ошибка углового положения. Определяется как положительный или отрицательный уход от нормативного углового состояния, что очень часто наблюдается в случаях перехода ротора из одного положения в другое. Как правило, виновата инерция, а также плохая подгонка деталей.
  • Точность позиционирования. Это максимальное значение ошибок углового положения ротора, которые возникают за весь период шагового движения.

Важно! Отыскать нормативные сведения для каждой категории шаговых двигателей можно как на официальной странице их производителей, так и из справочной документации, которая прилагается к такого рода изделиям. Как правило, значение ошибки находится в пределах от 0,08 до -0,03°. Проще говоря, точность позиционирования высчитывается в виде суммы двух этих показателей: 0,08° 0,03° = 0,11°.

Шаговый двигатель устройство принцип работы типы схемы подключения

Таким образом, шаговый двигатель, принцип работы которого мы описываем, относится к высокоточному оборудованию.

Высокое отношение электромагнитного момента к моменту инерции

Как вы уже представляете, от шагового двигателя требуется максимально быстро начать движение сразу после поступления на контроллер управляющего импульса. Он должен столь же быстро остановиться, обладая высокой точностью позиционирования. Если во время движения последовательность импульсов управления прервется, двигатель перестанет работать в положении, определяемом последним импульсом.

Также следует иметь в виду, что отношение электромагнитного момента к моменту инерции ротора у ШД должно быть намного выше аналогичного показателя для обычных электромоторов.

Шаговая частота вращения и частота импульсов

Так как частота вращения у ШД фактически представляет собой количество шагов в единицу времени, вместо термина «частота вращения» в специализированной литературе нередко можно встретить определение «шаговая частота вращения». Перед тем как подключить электродвигатель, об этих нюансах нужно обязательно прочесть.

Так как у большинства шаговых двигателей эта частота равна количеству управляющих импульсов, не стоит удивляться необычному ее обозначению в технических справочниках. Точнее, для подобных моторов единицей измерения нередко является герц (Гц).

УПРАВЛЕНИЕ ШАГОВЫМ ДВИГАТЕЛЕМ

n = 60f/S, где n – частота вращения, выражается в оборотах в минуту; f – шаговая частота вращения; S – число шагов.

С = 66·Рном

Несложно догадаться, что под Рном понимается номинальная мощность электродвигателя в кВт.

Реактивные двигатели

Именно эта разновидность приборов повсеместно используется по сей день. По сути, это почти стандартный трехфазный двигатель, на статоре которого имеется шесть зубцов. Проще говоря, каждые два зубца, противостоящие друг другу, принадлежат к одной и той же фазе. Используется последовательное или параллельное соединение их катушек.

Высокое отношение электромагнитного момента к моменту инерции

В качестве ротора используется магнит цилиндрической формы, на статоре же есть четыре зубца с индивидуальной обмоткой. Чтобы сильнее уменьшить угол шага, в этих моделях шаговых двигателей приходится увеличивать как количество полюсов ротора, так и число зубцов на статоре. Впрочем, следует помнить о том, что оба этих параметра имеют достаточно строгие физические ограничения.

Как мы уже говорили, шаговые устройства с постоянными магнитами останавливаются в строго фиксированном положении даже в тех случаях, когда убрано напряжение с обмоток. В этом случае срабатывает тот самый механизм фиксации, который мы обсудили выше, – положение фиксации.

Использование постоянных магнитов оправдано с многих точек зрения, но в то же время их применение может приводить сразу к нескольким проблемам. Во-первых, их цена далека от доступной. Кстати, сколько стоит такой шаговый двигатель? Цена моделей с постоянными магнитами превышает 100 тысяч рублей.

Во-вторых, максимальная плотность магнитного поля может быть не слишком высока, так как это значение ограничено намагниченностью самого носителя. Так, сравнительно дешевые постоянные ферритовые магниты не позволяют получить более-менее достаточной напряженности поля. А какие есть еще типы электродвигателей, работающих по этому принципу?

Оцените статью
MALIVICE.RU