Расчет токов однофазного кз в сети 0,4 кВ

Ток межфазного КЗ

Это аварийный режим работы электросети, вызванный электроконтактом разноименных фаз. В качестве примера приведем типовые виды замыканий.

Виды коротких замыканий
Виды коротких замыканий

Обозначения:

  1. Трехфазные КЗ.
  2. Замыкание двух фазных проводов.
  3. КЗ на землю при двухфазном замыкании.
  4. Фазное (однофазное) КЗ. Замыкание может происходить с землей или нулевым проводом в системах с изолированной или заземленной нейтралью.

https://www.youtube.com/watch?v=ytcreatorsru

Как видно из рисунка, под определение межфазного замыкание подходит пункт 2. Заметим, что при определенных условиях 1 и 3 также можно рассматривать как частный случай межфазного КЗ.

При любом виде замыкания ток является основной характеристикой аварийного режима работы трехфазной сети. Эго необходимо принимать во внимание при разработке электрооборудования, для чего применяется специальная методика, описание которой можно найти на нашем сайте.

Расчет тока КЗ помимо электроустройств также необходим для выбора характеристик аппаратов, производящих защитное (аварийное) отключение, например автоматические выключатели или системы релейной защиты.

Перечислим факторы, от которых зависит ток КЗ:

  • Удаление аварийного участка от источника питания. Чем больше расстояние между ними, тем меньшим будет уровень тока КЗ.
  • Тип, сечение токоведущих элементов и длина силовых магистралей между аварийным участком и источником электроэнергии. При этом немаловажное влияние оказывают параметры и состояние коммутаторов, расположенных в данной цепи. Перечисленные выше характеристики цепи позволяют рассчитать эквивалентное сопротивление нагрузки, необходимое для определения тока замыкания.

Обратим внимание, что вид электрического соединения при КЗ влияет на величину тока замыкания. Наблюдается следующая зависимость:

  • Металлический контакт фазных напряжений образует наибольшую величину тока. Именно поэтому при проектировании электрооборудования производятся расчеты для данного электрического соединения.
  • Дуговое КЗ образует меньший ток. Но на практике можно часто наблюдать неустойчивую дугу, то есть, периодически зажигающуюся и затухающую, что приводит к образованию переходных процессов. Они, в свою очередь, могут вызвать превышение расчетных характеристик тока КЗ.
  • Тлеющее КЗ образует уровень тока существенно меньше расчетного, что может негативно отразиться срабатывании автоматов защиты. На практике наблюдались случаи, когда данный вид замыкания становился дуговым или образовывал металлический контакт, вызывая срабатывание АВ. Но после включения линии электрическое соединение вновь возвращалось к состоянию тлеющего замыкания, нее распознаваемое АВ. В таких случаях для распознавания аварийного участка необходимо подать на линию повышенное напряжение или провести измерение сопротивление изоляции.
Проверка изоляции с помощью мегаомметра
Проверка изоляции с помощью мегаомметра

2. Приближенный метод определения тока однофазного КЗ

Используя данный метод можно с большой степенью точности определять токи КЗ при известных сопротивлениях прямой, обратной и нулевой последовательности цепи фаза-нуль.

К сожалению, на практике данный метод не всегда возможно использовать, из-за отсутствия справочных данных на сопротивления прямой, обратной и нулевой последовательности для кабелей с алюминиевыми и медными жилами с учетом способов прокладки фазных и нулевых проводников.

где:

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

где:х1т и r1т; х2т и r2т; х0т и r0т — индуктивное и активное сопротивления трансформатора токам прямой, обратной и нулевой последовательности, мОм. Принимаются по таблице 2.4 [Л3, с 29].

Значение Zт/3 для различных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 [Л1, с 6,7].

Сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас.

2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 [Л3, с 40]:

  • Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 [Л3, с 41,42] или по таблицам [Л2], мОм/м;
  • l – длина участка, м.
  • Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для различных кабелей и шинопроводов согласно [Л3, с 41,42].

    Таблицы 2.10, 2.11 - Полное удельное сопротивление петли фаза-нуль для кабелей
    Таблицы 2.12 - 2.15 - Полное удельное сопротивление петли фаза-нуль для кабелей и шинопроводов

    Справочные таблицы 7, 10 со значениями активных сопротивления медных и алюминиевых проводов, кабелей [Л1, с 6, 14].

    Таблица 7 - Активные сопротивления медных и алюминиевых проводов и кабелей с резиновой и пластмассовой изоляцией при температуре жилы  65 С, Ом/км
    Таблица 10 -Активные сопротивления кабелей с бумажной изоляцией при температуре жилы  80 С, Ом/км

    Справочные таблицы 11, 12, 13 со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4) — жильных кабелей с различной изоляций и при температуре жилы 65( 80) С [Л1, с 15, 16].

    Таблицы 11 - 13 - со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4)- жильных кабелей с различной изоляций и при температуре жилы  65( 80)

    На практике согласно [Л1, с 5] рекомендуется использовать приближенный метод определения тока однофазного КЗ. При таком методе, допустимая погрешность в расчете тока однофазного КЗ при неточных исходных данных в среднем равна – 10% в сторону запаса; 18-20% — при схеме соединения трансформатора Y/Y0, когда преобладает активная нагрузка и для зануления используется 4-я жила либо оболочка кабеля; 10-12% — при использовании стальных труб для зануления электропроводки.

    Из выше изложенного, следует, что при использовании данного метода, создаётся не который запас при расчете, который гарантирует срабатывания защитного аппарата, согласно требованиям ПУЭ.

    Литература:

    1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
    2. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
    3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Где возникает и почему?

Теоретически КЗ может образоваться в любой точке сети. Этот процесс носит случайный характер, за исключением тех случаев, когда короткое замыкание вызывается принудительно, при помощи короткозамыкателя для оперативного отключения высоковольтных линий электропередач.

Короткозамыкатель КЗ-110

Непреднамеренное КЗ может возникнуть в следующих местах:

  • На изоляторах, как проходных, так и опорных, используемых для токоведущих частей.
  • Между фазными обмотками электрических машин и электромагнитных устройств, например, трансформаторов тока, двигателей или генераторов.
  • В воздушных и кабельных линиях электропередач.
  • В коммутаторах электрических цепей, например, разъединителях, рубильниках, автоматических выключателях и т.д.
  • В цепях оборудования или других потребителей электроэнергии.

Причины КЗ могут быть вызваны различными условиями, перечислим наиболее распространенные электрические соединения:

  • Металлический контакт межфазных напряжений с минимальным переходным сопротивлением и исключением электрической дуги.
  • Дуговые замыкания. Между фазными проводниками протекают сильные токи нагрузки даже при воздушном зазоре.
  • Тлеющие КЗ, как правило, возникают в силовых КЛ при разрушении или повреждении изоляции токопроводящих линий. В результате на участке сети между фазными проводниками может образоваться зона с малым сопротивлением, что приводит к перегреву изоляции.
  • Пробой силовых полупроводниковых элементов, например, тиристоров.

Последствия

Межфазные КЗ могут не только отразиться на режимах работы электроустройств, ни и стать причиной их выхода из строя. Помимо этого токоведущие элементы подвергаются как термической, так и динамической нагрузке. Последняя характерна для мощных энергосистем, в которых наблюдается притягивание или отталкивание токопроводящих элементов. Это взаимодействие зависит от направления тока.

При аварии высоковольтных цепей динамическая нагрузка может привести к разрушению изоляторов, поддерживающих токопроводные магистрали, что только усугубляет ситуацию.

Термическая нагрузка проявляется в виде нагрева проводников при прохождении по ним тока замыкания. В результате токопроводы становятся, в буквальном смысле, нагревательными элементами.

https://www.youtube.com/watch?v=ytcopyrightru

Не менее опасным поражающим фактором при межфазном КЗ является образование электродуги, оказывающей негативное воздействие как на человека, так и оборудование. Она способна в течение микросекунд нагреть поверхность контакта до 4000°С — 10000°С, а в некоторых случаях и более. Соответственно, при такой высокой температуре плавится практически все металлические элементы. Нередко до срабатывания защиты дуга успевает пережечь токоведущие шины.

Образование электрической дуги на размыкателях
Образование электрической дуги на размыкателях

Электродуга не только нагревает как место контакта, так и окружающее ее пространство. Если рядом с ней расположены горючие материалы, то вероятность пожара существенно увеличивается.

Ожог, вызванный дугой, сложно поддается лечению. Это связано с тем, что мелкие брызги расплавленных металлов оседают на коже, образуя эффект металлизации. Характерно, что на практике случайно попасть под воздействие дуги практически нереально. Как правило, причина кроется в нарушении ТБ, технологических процессов, а также других ошибок, связанных с воздействием человеческого фактора.

К негативным последствиям КЗ также стоит отнести снижение уровня напряжения на аварийном участке. Это создает ряд дополнительных проблем, проявляющихся в виде сбоев в работе оборудования, подключенного к данной сети. Например, отключаются магнитные пускатели, срабатывает защита блоков питания электронных систем, повышается рабочий ток электродвигателей и т.д.

Способы защиты

Мы уже рассматривали ранее способы защиты от КЗ, но учитывая актуальность данной темы, будет полезным напомнить о них. В быту для этих целей используются автоматические выключатели, встроенная в них электромагнитная защита реагирует на токи замыкания, и снимает нагрузку при межфазных, однофазных и других замыканиях.

Селективность устройств защиты в бытовых и распределительных сетях позволяет локализовать аварийный участок, оставив подключенными потребителей, запитанных от неповрежденных фаз.

Профилактика

https://www.youtube.com/watch?v=ytdevru

Несмотря на то, что образование замыкания носит случайный характер, применяя ряд профилактических мер, можно несколько снизить вероятность его возникновения. К таковым мерам относятся:

  • Своевременная замена электрооборудования, у которого закончился срок эксплуатации.
  • Регулярное проведение планово-предупредительных ремонтов. При таких процедурах можно своевременно обнаружить и устранить повреждение изоляции токоведущих линий, межвитковые замыкания первичных или вторичных обмоток трансформатора и другие неисправности.
  • Электрооборудование необходимо эксплуатировать в штатном режиме, перегрузка существенно снижает его ресурс.
  • Соответствующая подготовка и регулярный инструктаж обслуживающего и электротехнического персонала.
ЧИТАТЬ ДАЛЕЕ:  Бензиновый генератор 7 кВт ТОП-10 лучших трехфазных моделей с автозапуском характеристики достоинства и недостатки устройств
Оцените статью
MALIVICE.RU