Как сделать тепловой насос своими руками из холодильника

Как работает оборудование

Технология, по которой работает агрегат, сходна с той, по которой функционирует холодильник.

А заключается она в выкачивании тепла из камер и передаче его наружу через радиаторы.

По сути, насос работает также — он забирает тепло из окружающей среды, перерабатывает и подает в отопительную систему.

Система состоит из пары контуров — внешнего и внутреннего, где циркулирует аммиак или фреон.

В качестве источника тепла чаще всего используются вода, земля воздух.

Суть работы агрегата заключается в передаче хладагентом тепла в отопительную систему, что происходит по следующей схеме:

  • теплообменник повышает температуру на 3-6 градусов;
  • хладагент перемещается во внутренний контур;
  • проходит через испаритель, трансформирующий жидкость в газообразное состояние;
  • попадает в компрессор — температура возрастает за счет сжатия газа;
  • в конденсаторе газ передает набранную температуру воде;
  • охлажденный хладореагент вновь становится жидким.

Чтобы выяснить продуктивность прибора, следует вычислить коэффициент преобразования, складывающийся из соотношения количества тепла, которое насос выдает, к тому, что он потребляет.

Особенности установки приборов

Как сделать тепловой насос своими руками из холодильника

Классическая конструкция приборов состоит из пары контуров.

Важнейшую роль в ней играет теплообменник, выполняющий роль провоцирующего фактора.

Внешний контур — трубы с высокой теплопроводностью, по ним циркулирует хладагент.

Этот контур имеет разнообразные места расположения и по-разному реализовывать действие прибора, но функция у него одна:

  • благодаря циркуляции фреона (аммиака) тепло из окружающей среды перемещается к компрессору.

Второй контур состоит из:

  • компрессора (про пластиковые шланги высокого давления прочитайте здесь);
  • испарителя;
  • конденсатора;
  • редукционного клапана.

Гидродинамический тепловой насос отличается от иных конструкцией — прибор состоит из муфты соединительной, передающей выработанную энергию в генератор, где и прогреется жидкость, двигателя и теплогенератора.

При монтаже агрегата важно учитывать расположение внешнего контура, в зависимости от чего, и проводится тот или иной вид монтажа. Так:

  • для насосов «воздух-вода» внешний контур с трубами располагают на стене или крыше здания, а сам прибор внутри помещения;
  • если устанавливается геотермальный насос, то расположить агрегат можно вертикально (выкапывается скважина до 100 метров в глубину, куда помещается зонд) или горизонтально (в траншею или котлован полутораметровой глубины трубы укладываются параллельно друг другу).
  • при монтаже насосов типа «вода-вода» внешний контур располагают в водоеме, на его дне.

Принцип работы

Самостоятельная установка альтернативной системы отопления частного дома тепловым насосом, изготовленного своими руками, верный способ сэкономить и обеспечить себе комфортные условия.

Тепловые насосы справятся с обогревом бассейна и гаража, дома и теплицы.

Как сделать тепловой насос Френетта в домашних условиях, посмотрите в видеосюжете.

Для сборки действующей модели теплового насоса не обойтись без знания теории, а точнее, принципа действия этого устройства. Хотелось бы изначально отметить, что утверждения о КПД в 300, 500 и 1000% — это миф или просто маркетинговый ход, рассчитанный на незнание рядовым пользователем законов физики.

Примером могут служить домашние холодильники и кондиционеры, чья конструкция основана на так называемом цикле Карно, его же использует принцип работы теплового насоса для отопления или ГВС. Суть этого цикла заключается в движении вещества (рабочего тела) по замкнутой системе и меняющего свое агрегатное состояние с жидкого на газообразное и наоборот. В момент перехода выделяется или поглощается огромное количество энергии.

Чтобы пояснить на более доступном языке, перечислим основные элементы, которые включает в себя устройство теплового насоса:

  • компрессор;
  • теплообменник, где рабочее тело переходит в газообразное состояние (испаритель);
  • теплообменник, в котором рабочее тело конденсируется (конденсатор);
  • расширительный (редукционный) клапан;
  • средства управления и автоматики;
  • магистрали из медных трубок.

Пройдя компрессор, фреон под давлением движется ко второму теплообменнику, где ему предстоит сконденсироваться и передать полученное тепло воде, снова приняв жидкое состояние. Далее, рабочее тело попадает в расширительный клапан, давление снова падает и оно продолжает свой путь к испарению. Цикл завершен.

Заводские теплонасосы для жилого дома способны выдавать теплоноситель с температурой 55—60 ºС, этого достаточно для обогрева помещений радиаторами либо теплыми полами. При этом вся система отопления затрачивает электроэнергию на такие цели:

  • питание компрессора;
  • вращение роторов циркуляционных насосов наружного и внутреннего контура;
  • питание средств автоматики и контроля.

Тепловым насосом называют не отдельно взятый прибор, а установку, состоящую из следующих компонентов:

  • Циркуляционного насоса;
  • Испарителя;
  • Компрессора;
  • Конденсатора;
  • Других коммуникаций в зависимости от типа установки.

Все элементы соединены в цепь при помощи трубопровода. Задачами системы являются сбор энергии, выделение тепла и перенос его к месту потребления. Примерами работы простейшего теплового насоса являются холодильник, кондиционер или сплит-система. Испаритель и конденсатор выполняют роль теплообменников.

Разобравшись в принципе работы теплонасоса, не составит труда сделать такое устройство самостоятельно

Теплонасосные установки можно классифицировать по источнику и носителю тепла.

Виды устройств различают по двум признакам. Первый из них – среда, которая является источником энергии, второй – носитель, которому энергия передаётся, и который непосредственно обеспечивает обогрев жилища. Выделяют следующие типы систем:

  • Воздух – воздух;
  • Воздух – вода;
  • Вода – вода;
  • Земля – вода;
  • Земля – воздух.

Насос приводится в действие электрическим током, дизельным генератором или работает от солнечной батареи. Теплоноситель (вода или воздух) циркулирует по трубкам, проходит через испаритель и отдаёт тепло хладагенту. Происходит переход хладагента из жидкого в газообразное состояние. Компрессор сжимает газ с повышением температуры.

В конденсаторе происходит выделение энергии и нагревание теплоносителя. Далее вещество, нагретое до высокой температуры, поступает в систему отопления дома. Выходит теплоноситель уже охлаждённым, цикл повторяется. Таким образом, затраты электроэнергии (либо другого источника энергии) идут только на работу циркуляционного насоса и теплового прибора. Обогрев дома происходит не электричеством, а теплом природного накопителя энергии.

Чем тепловой насос отличается от других установок для отопления частных домов:

  • в отличие от котлов и обогревателей, агрегат самостоятельно не производит тепло, а подобно кондиционеру перемещает его внутрь здания;
  • ТН получил название насоса, поскольку «выкачивает» энергию из источников низкопотенциального тепла – окружающего воздуха, воды либо грунта;
  • установка питается исключительно электроэнергией, потребляемой компрессором, вентиляторами, циркуляционными насосами и платой управления;
  • работа аппарата основана на цикле Карно, используемом во всех холодильных машинах, например, кондиционерах и сплит-системах.
Принцип действия бытовой сплит-системы
В режиме обогрева традиционная сплит-система нормально работает при температуре выше минус 5 градусов, на сильном морозе эффективность резко падает

В теплообменном цикле Карно участвует рабочее тело – газ фреон, кипящий при минусовой температуре. Поочередно испаряясь и конденсируясь в двух теплообменниках, хладагент поглощает энергию окружающей среды и переносит внутрь здания. В целом принцип действия теплового насоса повторяет работу кондиционера, включенного на обогрев:

  1. Находясь в жидкой фазе, фреон двигается по трубкам наружного теплообменника-испарителя, как изображено на схеме. Получая тепло воздуха или воды сквозь металлические стенки, хладагент нагревается, кипит и испаряется.
  2. Дальше газ поступает в компрессор, нагнетающий давление до расчетного значения. Его задача – поднять точку кипения вещества, чтобы фреон сконденсировался при более высокой температуре.
  3. Проходя через внутренний теплообменник–конденсор, газ снова обращается в жидкость и отдает накопленную энергию теплоносителю (воде) или воздуху помещения напрямую.
  4. На последнем этапе жидкий хладон поступает внутрь ресивера–влагоотделителя, затем в дросселирующее устройство. Давление вещества снова падает, фреон готов пройти повторный цикл.
Как работает тепловой насос
Схема работы теплового насоса похожа на принцип действия сплит-системы

В бытовых кондиционерах и ТН применяются различные типы терморегулирующей арматуры, снижающей давление хладагента перед испарителем. В бытовых сплит-системах роль регулятора играет простое капиллярное устройство, в насосах ставится дорогой терморегулирующий вентиль (ТРВ).

Заметьте, вышеописанный цикл происходит в тепловых насосах всех типов. Разница состоит в способах подвода/отбора тепла, которые мы перечислим далее.

Дроссельные устройства кондиционера
Виды дроссельной арматуры: капиллярная трубка (фото слева) и терморегулирующий вентиль (ТРВ)

Согласно общепринятой классификации, ТН делятся на типы по источнику получаемой энергии и виду теплоносителя, которому она передается:

  1. Насосы типа «воздух-воздух» наиболее близки к традиционным сплит-системам, разница состоит в площади наружного испарителя. Аппарат отнимает теплоту окружающей среды и напрямую передает воздуху помещения, как происходит в обычном кондиционере.
  2. Конструкция генераторов «воздух–вода» идентична, но предусматривает нагрев воды либо антифриза, циркулирующего по системе отопления жилого дома.Отопитель типа воздух-вода
  3. Установка типа «вода-вода» берет низкопотенциальное тепло водоема и передает жидкому теплоносителю. Здесь применяется дополнительный внешний теплообменник из труб, погруженный в колодец, озеро, скважину или канализационный септик. Циркуляцию воды через испаритель обеспечивает второй насос.
  4. Геотермальный ТН использует теплоту грунта и нагревает внутридомовой теплоноситель. Внешний теплообменный контур представляет собой змеевик с антифризом, заглубленный на 1.5—2 м и занимающий большую площадь. Второй вариант – несколько вертикальных зондов из труб, опущенных внутрь скважин на глубину 10—100 метров.

Делаем геотермальную установку

Схемы отбора тепла водной среды
Способы отбора тепла водных источников: из пруда (слева) и через скважины (справа)

Водяные и грунтовые системы эффективнее, их реальный коэффициент лежит в диапазоне 3…4.5. Производительность – величина переменная, зависящая от многих факторов: конструкции теплообменного контура, глубины погружения, температуры и протока воды.

Хотя в интернете опубликована масса примеров сборки подобных аппаратов, универсальной инструкции с чертежами не существует. Мы предложим рабочий вариант, собранный и проверенный реальным домашним мастером, хотя многие вещи придется додумывать и доделывать самостоятельно – всю информацию о тепловых насосах сложно поместить в одной публикации.

Следуя собственным рекомендациям, приступаем к расчетам геотермального насоса с вертикальными U-образными зондами, помещенными в скважины. Необходимо узнать общую протяженность внешнего контура, а потом – глубину и количество вертикальных шахт.

Исходные данные для примера: нужно обогреть частный утепленный дом площадью 80 м² и высотой потолков 2.8 м, расположенный в средней полосе. Расчет нагрузки на отопление производить не станем, определим потребность в тепле по площади с учетом теплоизоляции – 7 кВт.

Способы раскладки трубы внешнего контура ТН
По желанию можно обустроить горизонтальный коллектор, но тогда придется выделить большую площадь под земляные работы

Интенсивность теплообмена между землей и незамерзающей жидкостью, циркулирующей по контуру, зависит от типа грунтов:

  • 1 погонный метр вертикального зонда, погруженного в подземные воды, получит около 80 Вт теплоты;
  • в каменистых грунтах теплосъем составит порядка 70 Вт/м;
  • глинистые почвы, насыщенные влагой, отдадут примерно 50 Вт на 1 м коллектора;
  • сухие породы – 20 Вт/м.

Пример вычисления длины трубы. Чтобы извлечь из сырой глинистой породы необходимые 7 кВт тепловой энергии, понадобится 7000 Вт поделить на показатель 50 Вт/м, получаем общую глубину зонда 140 м. Теперь трубопровод распределяется по скважинам глубиной 20 м, которые вы сможете пробурить своими руками.

Следующий этап – расчет площади теплообмена испарителя и конденсора. На различных интернет-ресурсах и форумах предлагаются некие расчетные формулы, в большинстве случаев – некорректные. Мы не возьмем на себя смелость рекомендовать подобные методики и вводить вас в заблуждение, но предложим некий хитрый вариант:

  1. Обратитесь к любому известному производителю пластинчатых теплообменников, например, Alfa Laval, Kaori, «Анвитэк» и так далее. Можно выйти на официальный сайт бренда.
  2. Заполните форму подбора теплообменника либо созвонитесь с менеджером и закажите подбор агрегата, перечислив параметры сред (антифриз, фреон) – температуру на входе и выходе, тепловую нагрузку.
  3. Специалист фирмы произведет необходимые расчеты и предложит подходящую модель теплообменника. Среди его характеристик вы найдете главную – площадь поверхности обмена.

Пластинчатые агрегаты очень эффективны, но дороги (200—500 евро). Дешевле собрать кожухотрубный теплообменник из медной трубки наружным диаметром 9.5 или 12.7 мм. Выданную производителем цифру умножьте на коэффициент запаса 1.1 и поделите на длину окружности трубы, получите метраж.

Устройство пластинчатого теплообменника
Пластинчатый теплообменник из нержавейки – идеальный вариант испарителя, он эффективен и занимает мало места. Проблема в высокой цене изделия

Пример. Площадь теплового обмена предложенного агрегата составила 0.9 м². Выбрав медную трубку ½” диаметром 12.7 мм, вычисляем длину окружности в метрах: 12.7 х 3.14 / 1000 ≈ 0.04 м. Определяем общий метраж: 0.9 х 1.1 / 0.04 ≈ 25 м.

Будущий тепловой насос предлагается строить на базе наружного блока сплит-системы подходящей мощности (указана на табличке). Почему лучше использовать б/у кондиционер:

  • аппарат уже оснащен всеми комплектующими – компрессором, дросселем, ресивером и пусковой электрикой;
  • самодельные теплообменники можно поместить в корпус холодильной машины;
  • есть удобные сервисные порты для заправки фреона.

Собирать ТН на базе старого холодильника нецелесообразно – мощность агрегата слишком мала. В лучшем случае удастся «выжать» до 1 кВт теплоты, чего хватит на обогрев одной небольшой комнаты.

Помимо внешнего блока «сплита» понадобятся следующие материалы:

  • труба ПНД Ø20 мм – на земляной контур;
  • полиэтиленовые фитинги для сборки коллекторов и подключения к теплообменникам;
  • циркуляционные насосы – 2 шт.;
  • манометры, термометры;
  • качественный водопроводный шланг либо труба ПНД диаметром 25—32 мм на оболочку испарителя и конденсатора;
  • трубка медная Ø9.5—12.7 мм с толщиной стенки не менее 1 мм;
  • утеплитель для трубопроводов и фреоновых магистралей;
  • комплект для герметизации греющих кабелей, укладываемых внутри водопровода (понадобится для уплотнения концов медных трубок).
Приспособление для ввода греющего кабеля в трубу
Комплект втулок для герметичного ввода медной трубки

В качестве внешнего теплоносителя применяется солевой раствор воды либо антифриз для отопления – этиленгликоль. Также понадобится запас фреона, чья марка указана на шильдике сплит-системы.

Перед началом монтажных работ наружный модуль надо разобрать – снять все крышки, удалить вентилятор и большой штатный радиатор. Отключите электромагнит, управляющий реверсивным клапаном, если не планируете использовать насос в качестве охладителя. Датчики температуры и давления необходимо сохранить.

Порядок сборки основного блока ТН:

  1. Изготовьте конденсор и испаритель, просунув медную трубку внутрь шланга расчетной длины. На концах установите тройники для присоединения грунтового и отопительного контура, выступающие медные трубки уплотните с помощью специального комплекта для греющего кабеля.
  2. Используя в качестве сердечника отрезок пластиковой трубы Ø150—250 мм, намотайте самодельные двухтрубные контуры и выведите концы в нужные стороны, как это делается ниже на видео.
  3. Разместите и закрепите оба кожухотрубных теплообменника на месте штатного радиатора, медные трубки подпаяйте к соответствующим выводам. «Горячий» теплообменник–конденсатор лучше подключить к сервисным портам.Компоновка элементов геотермальной установки
  4. Установите заводские датчики, измеряющие температуру хладагента. Утеплите голые участки трубок и сами теплообменные устройства.
  5. На водяных магистралях поставьте термометры и манометры.

На тематических форумах встречается другой способ изготовления испарителя – трубка из меди навивается спиралью, затем вставляется внутрь закрытой емкости (бака или бочки). Вариант вполне разумен при большом количестве витков, когда рассчитанный теплообменник попросту не помещается в корпусе кондиционера.

На данном этапе выполняются несложные, но трудоемкие земляные работы и раскладка зондов по скважинам. Последние можно проделать вручную либо пригласить буровую машину. Расстояние между соседними скважинами – не менее 5 м. Дальнейший порядок работ:

  1. Прокопайте между сверлениями неглубокую траншею для укладки подводящих трубопроводов.
  2. В каждое отверстие опустите по 2 петли из полиэтиленовых труб и залейте ямы бетоном.
  3. Сведите магистрали к точке соединения и смонтируйте общий коллектор, используя фитинги ПНД.
  4. Проложенные в земле трубопроводы утеплите и засыпьте грунтом.
Монтаж внешнего контура ТН
Слева на фото – опускание зонда в обсадную пластиковую трубу, справа – прокладка подводок в траншее

При соединении магистралей ориентируйтесь по схеме, представленной ниже. Отводы с кранами понадобятся при заполнении системы рассолом либо этиленгликолем. Две основные трубы от коллектора подведите к тепловому насосу и подключите к «холодному» теплообменнику–испарителю.

Схема обвязки теплового насоса
В высших точках обеих водяных контуров обязательно ставятся воздухоотводчики, на схеме условно не показаны

В связи с тем, что тепловые насосы различаются по типу теплообменников, то и своими руками можно собрать различные конструкции используя компоненты от оборудования различной направленности.

Для изготовления понадобятся:

  • Компрессор от кондиционера;
  • Трубки, предпочтительно из меди – для изготовления конденсатора;
  • Металлопластиковые трубы – для изготовления испарителя;
  • Терморегулятор (вентиль);
  • Изоляционный материал (поролоновая труба);
  • Фитинги для труб обоих видов;
  • Фреон;
  • Материалы для изготовления каркаса (уголок, профиль и т.д.);
  • Приборы управления и контроля (датчик температуры и давления, таймер и т.д.).

Из трубок изготавливаются теплообменники, для этого медные трубки вставляются в металлопластиковые, которые в свою очередь помещаются в изоляционные. По шаблону трубки изгибаются в форме змеевика, на концах монтируются фитинги для плотного соединения с системой подачи теплоносителей. Места соединения герметизируются.Изготавливается каркас для крепления компрессора.Устанавливается компрессор и соединяется с теплообменниками. Система заполняется фреоном.

К входу испарителя подключается внешний контур теплоносителя, а к выходу его отвод. Отопительный контур подключается аналогично, с той лишь разницей, что он подключается к конденсатору.

Устанавливаем датчики температуры и давления, электрические приборы контроля и защиты – система готова к работе.

Устройство и принцип работы

Тепловые насосы классифицируются по:

  • По принципу действия;
  • Внешнему источнику энергии;
  • Количеству теплоносителей;
  • Вторичному источнику энергии;
  • Типу теплообменников;
  • Принципу взаимодействия рабочих сред;
  • Типу хладагента;
  • Режиму рабочих температур;
  • Назначению;
  • Системам функционирования;
  • Режиму работы;
  • Производительности.

Насосы, в зависимости от среды, в которой они забирают энергию, делят на виды:

  1. Воздух-вода — самый бюджетный способ организации отопления.

    Прибор можно сделать самостоятельно, для его полноценного функционирования не требуется создавать внешний контур со сложной структурой.

    Минус прибора в том, что при похолодании продуктивность снижается.

    Прибор, работающий по системе воздух-вода, идеально подходит для отопления бассейна с джакузи для улицы (написано здесь), он практичен и прост в управлении.

  2. Вода-вода.
    Внешний контур прибора располагают в незамерзающем водоеме, как правило — в грунтовых водах или в искусственном.

    Вода считается наиболее эффективной средой по уровню отдачи тепла (расчет батарей отопления частного дома), поэтому такие насосы пользуются большой популярностью.

    Максимально продуктивно насос будет работать, если его расположить в скважине, в грунтовых водах, не подвергающихся существенным перепадам температуры.

    Прибор рекомендуется использовать для обогрева бассейна или помещения, имеющего небольшую площадь.

  3. Рассол-вода.
    Приборы используются для обогрева помещений (лучшие радиаторы отопления для квартиры), теплиц, бассейнов.

    Этот тип насосов для забора тепла использует грунт, поэтому для его установки потребуется сделать коллекторы (для укладки труб внешнего контура горизонтально) или скважины (в них прибор размещается вертикально.

    При расчете глубины следует учесть, что каждый погонный метр дает тепла от 40 до 60 Ватт).

    Имейте ввиду, что за незаконное бурение скважин предусмотрен штраф (написано здесь)

    Технология получила свое название благодаря незамерзающей жидкости, которая наливается в трубы.

Про воздушный тепловой насос для отопления дома прочитайте здесь.

Какой ТН лучше собирать

Формулируем задачу: нужно построить самодельный тепловой насос с наименьшими затратами. Отсюда вытекает ряд логичных выводов:

  1. В установке придется использовать минимум дорогостоящих деталей, поэтому достичь высокого значения COP не удастся. По коэффициенту производительности наш аппарат проиграет заводским моделям.
  2. Соответственно, делать чисто воздушный ТН бессмысленно, проще пользоваться инверторным кондиционером в режиме обогрева.
  3. Чтобы получить реальную выгоду, нужно изготавливать тепловой насос «воздух – вода», «вода-вода» либо строить геотермальную установку. В первом случае можно добиться COP около 2—2.2, в остальных – достичь показателя 3—3.5.
  4. Без контуров напольного отопления обойтись не удастся. Теплоноситель, нагретый до 30—35 градусов, несовместим с радиаторной сетью, разве только в южных регионах.
Прокладка труб до озера
Прокладка внешнего контура ТН к водоему

Для реализации водяной версии ТН необходимы определенные условия (на выбор):

  • водоем за 25—50 м от жилища, на большем расстоянии потребление электричества сильно вырастет за счет мощного циркуляционного насоса;
  • колодец либо скважина с достаточным запасом (дебетом) воды и место для слива (шурф, вторая скважина, сточная канава, канализация);
  • сборный канализационный коллектор (если вам позволят туда врезаться).

Расход грунтовых вод рассчитать нетрудно. В процессе отбора теплоты самодельный ТН понизит их температуру на 4—5 °С, отсюда через теплоемкость воды определяется объем протока. Для получения 1 кВт тепла (дельту температур воды принимаем 5 градусов) нужно прогнать через ТН около 170 литров в течение часа.

На отопление дома площадью 100 м² потребуется мощность 10 кВт и расход воды 1.7 тонны в час — объем впечатляющий. Подобный тепловой водяной насос сгодится для небольшого дачного домика 30—40 м², желательно – утепленного.

Способы прокладки труб теплового насоса
Способы отбора теплоты геотермальным ТН

Сборка геотермальной системы более реальна, хотя процесс довольно трудоемкий. Вариант горизонтальной раскладки трубы по площади на глубине 1.5 м отметаем сразу – вам придется перелопатить весь участок либо платить деньги за услуги землеройной техники. Способ пробивки скважин реализовать гораздо проще и дешевле, практически без нарушения ландшафта.

Поскольку термодинамический расчет теплового насоса представляет для большинства домашних мастеров — самодельщиков немалую сложность, приводить его здесь мы не будем. Наша задача – представить несколько действующих моделей, чтобы любой энтузиаст мог взять какую-нибудь из них за основу для создания собственного детища.

Изготовление и монтаж

Сделать тепловой насос не сложно, если есть детали — компрессор (его можно вытащить из сломанного кондиционера), медные трубки (для контура) и бак объемом в сто литров.

Изготавливают насос по такому алгоритму:

  • компрессор закрепляется на стене;
  • из труб делается змеевик (чтобы его сделать, нужно трубы обмотать вокруг емкости подходящей формы);
  • бак режется пополам, внутрь него помещается змеевик и заваривается;
  • в емкости оставляется несколько отверстий, через которые трубы змеевика выводятся наружу;
  • для изготовления испарителя используют бочку из пластика, идентичного с баком размера, в нее заводят трубы внутреннего контура;
  • устанавливаются трубы (монтажные схемы тёплых водяных полов в квартире) из ПВХ, транспортирующие нагретую воду;
  • самостоятельно заправлять агрегат фреоном не рекомендуется, лучше доверить это действие специалисту.

Как сделать тепловой насос своими руками из холодильника

Стоимость работ в различных регионах нашей страны может разительно отличаться. Кроме этого стоимость работы и насоса зависят от его типа и системы теплоснабжения.

Для того, чтобы иметь представление о порядке цифр за данную услугу, рассмотрим несколько предложений из разных регионов без учета стоимости прочего оборудования системы теплоснабжения здания.

  • В г. Санкт-Петербурге монтаж теплового насоса, вне зависимости от его типа, обойдется Заказчику в сумму от 35000,00 рублей;
  • В г. Москва монтажные организации, вне зависимости от типа теплового насоса, готовы выполнить работы «под ключ» за сумму свыше 45000,00 рублей;
  • В г. Краснодар монтаж теплового насоса будет стоить от 40000,00 рублей.
  • Если же говорить о монтаже систем отопления с использованием тепловых насосов, то средние цены на комплекс работ с учетом стоимости оборудования выглядят следующим образом:

A) Монтаж геотермальных бытовых тепловых насосов:

  • Мощностью – 4-5 кВт (50 – 100 м²) – от 130000,00 до 280000,00 рублей;
  • Мощностью – 6-7 кВт (80 – 120 м²) – от 138000,00 до 300000,00 рублей;
  • Мощностью – 8-9 кВт (100 – 160 м²) – от 160000,00 до 350000,00 рублей;
  • Мощностью – 10-11 кВт (130 – 200 м²) – от 170000,00 до 400000,00 рублей;
  • Мощностью – 12-13 кВт (150 – 230 м²) – от 180000,00 до 440000,00 рублей;
  • Мощностью – 14-17 кВт (180 – 300 м²) – от 210000,00 до 520000,00 рублей.

B) Стоимость монтажа воздушных тепловых насосов:

  • Мощностью до 6,0 кВт (50 – 100 м²) – от 110000,00 до 215000,00 рублей;
  • Мощностью до 9,0 кВт (80 – 120 м²) – от 115000,00 до 220000,00 рублей;
  • Мощностью до 12,0 кВт (100 – 160 м²) – от 120000,00 до 225000,00 рублей;
  • Мощностью до 14,0 кВт (130 – 200 м²) – от 127000,00 до 245000,00 рублей;
  • Мощностью до 16,0 кВт (150 – 230 м²) – от 130000,00 до 250000,00 рублей;
  • Мощностью до 18,0 кВт (180 – 300 м²) – от 135000,00 до 255000,00 рублей.

Простейший тепловой насос из оконного кондиционера

Как нетрудно догадаться, для изготовления ТН «вода – воздух» потребуется оконный охладитель в рабочем состоянии. Очень желательно купить модель, оборудованную реверсивным клапаном и способную работать на обогрев, иначе придется переделывать фреоновый контур.

Холодильная мощность оконного кондиционера
Отопительная мощность аппарата больше холодильной и равна сумме двух параметров — производительность плюс тепло, выделяемое компрессором

При некоторой доле везения вам даже не придется выпускать фреон и перепаивать трубки. Как переделать кондиционер в тепловой насос:

  1. Снимите верхний кожух агрегата и открутите внешний теплообменник от поддона. Аккуратно отодвиньте радиатор, стараясь не перегибать трубки с хладагентом.
  2. Снимите наружную крыльчатку с общего вала.
  3. Изготовьте металлический бак по длине внешнего теплообменника, ширину сделайте на 10—15 см больше. В боковые стенки врежьте штуцеры подачи проточной воды.
  4. Чтобы радиатор не обмерзал, увеличьте площадь обмена, добавив по бокам пластины из меди либо алюминия (в зависимости от материала теплообменника).
  5. Погрузите радиатор в бак, желательно без разрезания фреоновых трубок. Сделайте герметичную крышку и уплотните вводы контура.
  6. Подсоедините к штуцерам шланги подачи и отбора воды, подключите циркуляционные насосы. Наполните и проверьте бак на герметичность.

Как сделать тепловой насос своими руками из холодильника

Современные сплит-системы, особенно инверторного типа, успешно выполняют функции того же теплового насоса воздух – воздух. Их проблема в том, что эффективность работы падает вместе с наружной температурой, не спасает даже так называемый зимний комплект.

Домашние умельцы подошли к вопросу иначе: собрали самодельный тепловой насос из кондиционера, отбирающий теплоту проточной воды из скважины. По сути, от кондиционера тут используется только компрессор, иногда – внутренний блок, играющий роль фанкойла.

По большому счету, компрессор можно приобрести отдельно. К нему потребуется сделать теплообменник для нагрева воды (конденсатор). Медная трубка с толщиной стенки 1—1.2 мм длиной 35 м наматывается для придания формы змеевика на трубу диаметром 350—400 мм или баллон. После чего витки фиксируются перфорированным уголком, а затем вся конструкция помещается в стальную емкость с патрубками для воды.

Компрессор из сплит-системы присоединяется к нижнему вводу в конденсатор, а к верхнему подключается регулирующий клапан. Таким же образом изготавливается испаритель, для него сгодится обычная пластиковая бочка. Кстати, вместо самодельных емкостных теплообменников можно использовать заводские пластинчатые, но это обойдется недешево.

Сама по себе сборка насоса не слишком сложна, но здесь важно уметь правильно и качественно пропаивать соединения медных трубок. Также для заправки системы фреоном потребуются услуги мастера, не станете же вы специально покупать дополнительное оборудование. Дальше – этап наладки и пуска теплового насоса, который далеко не всегда проходит удачно. Возможно, придется немало повозиться, чтобы добиться результата.

Насос Френетта

Насос Френетта — прибор, отличающийся от рассматриваемых выше.

Он работает по иной технологии и состоит из двух цилиндров, меньший из которых подвижен и располагается в большем, неподвижном.

Все пространство между цилиндрами заполнено маслом, которое нагревается за счет движения малого цилиндра, подсоединенного к валу. Нагретое масло поступает в радиаторы.

Для изготовления насоса Френетта потребуется приобрести:

  1. Стальные диски — диаметр чуть меньше, чем у цилиндра.
  2. Стальной цилиндр — размер подбирается в зависимости от желаемой мощности, чем больше рабочая поверхность, тем производительнее получится прибор.
  3. Электродвигатель — предпочтите агрегат с удлиненным валом, так удобнее устанавливать диски. Выбору двигателя надо уделить особое внимание — для нагрева воды до сотни градусов надо, чтобы привод обеспечил не меньше 7500 оборотов в минуту.
  4. Теплообменник — техническое масло.

Принцип 3

Алгоритм сбора насоса не сложен — сначала вал на подшипниках размещается внутри цилиндра, при этом важно уплотнить место входа, чтобы не создавалось вибраций, выводящих из строя агрегат.

Затем на вал устанавливаются диски, а между ними накручиваются гайки, что обеспечит нужное расстояние между деталями.

Количество дисков определяется индивидуально и зависит от длины цилиндра, диски расположены в емкости равномерно.

Вверху и внизу цилиндра сверлятся отверстия — верхнее предназначается для крепления отопительных труб, а нижнее предназначается для возврата из радиаторов использованного масла.

Конструкция крепится на раму из металла, после чего цилиндр наполняется маслом, подключаются патрубки, проводится герметизация соединений.

вода-вода

Агрегат Френетта — насос, используемый для отопления жилых и нежилых помещений и бассейнов.

Он отличается компактным размером, что позволяет с помощью обустроить теплый пол (как сделать своими руками в квартире написано здесь) или согреть воду в бассейне.

Но важно учесть мощность агрегата — если она недостаточна, то желаемый результат получить не удастся.

Заключение

Сделать и запустить тепловой геотермальный насос своими руками весьма непросто. Наверняка потребуются неоднократные доработки, исправления ошибок, настройки. Как правило, большинство неполадок в самодельных ТН возникает из-за неправильной сборки либо заправки основного теплообменного контура. Если агрегат сразу отказал (сработала автоматика безопасности) либо не греет теплоноситель, стоит вызвать мастера по холодильному оборудованию – он проведет диагностику и укажет на допущенные ошибки.

Конечно, отопление дома тепловым насосом – мечта многих домовладельцев. К сожалению, стоимость установок слишком высокая, а справиться с собственноручным изготовлением могут единицы. И то зачастую мощности хватает лишь на ГВС, об отоплении речь не идет. Если бы все было так просто, то у нас в каждом доме стоял самодельный тепловой насос, а пока что он остается недоступным широкому кругу пользователей.

ЧИТАТЬ ДАЛЕЕ:  Как избавиться от неприятных запахов из вентиляционного канала
Оцените статью
MALIVICE.RU