Как правильно подключить сверхяркие светодиоды к блоку питания?

Подключение светодиода к питанию 5 и 12 Вольт: схемы с описанием

Предисловие

Недавно хвастался, что от китайских братьев пришла первая посылочка.

С тех пор, как сверхъяркие светодиоды (LED) стали доступны широкому кругу потребителей, к ним сразу проявился большой интерес. На основе LED можно создавать множество интересных светотехнических конструкций.

Однако, подключение светодиода к 12 вольтам, принципиально отличается от подключения к 12 вольтам той же лампы накаливания.

Разновидности блоков питания для светодиодов и процедура их подключения своими руками

В этом материале будет подробно рассказано о подключении светоизлучающих диодов к источникам питания, имеющим различное напряжение.

Если коротко ответить на вопрос, вынесенный в качестве подзаголовка, то ответ будет звучать так: никакие! Неспециалисту такой ответ покажется парадоксальным, ведь в продаже имеются светодиоды, которые, как заявляют продавцы, рассчитаны на питание от источника 12 вольт.

Возьмемся утверждать, что на конкретное напряжение могут быть рассчитаны только изделия на основе светодиодов. Говорить о конкретном рабочем напряжении LED не корректно. Это связанно с физическими процессами, протекающими в нем при испускании света.

Главными характеристиками этих процессов являются рабочий ток и максимально допустимый ток прибора. В справочниках и даташитах указывают напряжения на светодиодах при протекании рабочего тока. Эти величины используют для расчетов LED конструкций, а не для выбора источника питания.

Кстати, напряжение в рабочем режиме лежит всего лишь в пределах от 1.5 В до 3.5 В. Величина зависит, в основном, от цвета испускаемого LED. Меньшие напряжения падают на красных светодиодах, большие значения относятся к сверхъярким. Имеющиеся в продаже светоизлучающие диоды на 12 вольт не являются единичными приборами.

Двенадцативольтовые LED это матрицы, состоящие из нескольких светоизлучающих диодов. Матрицы представляют собой светодиодные сборки, собранные из цепочек последовательно подключенных приборов.

В каждой матрице имеется несколько цепочек, которые подключены параллельно между собой. Когда говорят, что светодиод рассчитан на двенадцать вольт, то подразумевают, что падение напряжения на последовательной цепочке из них при протекании рабочего тока составляет примерно 12 В.

Сначала рассмотрим способ подключения одного мощного сверхъяркого светодиода к 12 Вольтам. Допустим, в нашем распоряжении имеется прибор, рабочий ток которого 350 мА. При этом падение напряжения на нем в рабочем режиме составляет примерно 3.4 Вольта. Нетрудно подсчитать, что потребляемая мощность такого прибора составляет 1 W.

Понятно, что подключать его напрямую к 12 Вольтам нельзя. Нам придется, каким-то образом, «погасить» часть напряжения. В простейших случаях для этих целей применяются гасящие (токоограничивающие) резисторы. Его соединяют со светодиодом последовательно. Схема питания одного LED показана на фото.

R=(Uпит – Uраб)/Iраб.

P=I2*R.

В нашем примере мощность составит около 3 ватт. Найти сопротивление такой мощности довольно трудно, поэтому в качестве гасящего резистора можно применить два резистора по 100 Ом мощностью 2 Вт, соединенные параллельно.

В принципе на основе этих расчетов уже можно создавать практическую конструкцию. Выполнив подключение светодиода к 12В через выключатель, можно организовать дополнительную подсветку подкапотного пространства автомобиля, багажника или перчаточного бокса.

Мы показали, что создание такой схемы возможно, но применение ее нерационально. Нетрудно заметить, что две трети мощности потребляемой конструкцией приходится на гасящий резистор и, следовательно, тратится впустую. Ниже мы расскажем, как избежать ненужных потерь.

Очевидно, что по простейшей схеме к источнику 12 Вольт можно подключить сколько угодно. Главное, чтобы у подключаемого источника питания хватало мощности. Однако мы видели, что при такой схеме подключения много энергии расходуется бесполезно.

Простейшим выходом из этой ситуации является снижение мощности рассеиваемой на токоограничивающем резисторе.

ЧИТАТЬ ДАЛЕЕ:  Как подключить водонагреватель и самотк к одному крану для автономной подачи воды

Для снижения бесполезно рассеиваемой мощности, несколько светодиодов подключают последовательно и питают через один гасящий резистор. В этом случае падение напряжения на сопротивлении оказывается значительно меньше.

R=(Uпит – nUраб)/Iраб.

Где n – количество последовательно подключенных LED.

В случае источника 12 Вольт разумно подключать последовательно три светодиода и один гасящий резистор. Падение напряжения на светодиодах не превысит 10.5 Вольта и на долю резистора останется всего 1,5 Вольт.

Как правильно подключить сверхяркие светодиоды к блоку питания?

Такое техническое решение широко применяют, когда количество подключаемых к 12 Вольтам светодиодов кратно трем. Т. е. так можно подключить 6, 9, 12, …, 3N LED. Например, так поступают производители светодиодных лент. В них светодиоды сгруппированы по три и питаются через одно общее сопротивление.

Если нужно подключить 4 светодиода к 12 Вольтам, то целесообразно сгруппировать их по 2, и каждую пару питать через токоограничивающий резистор.

Последовательно следует подключать светодиоды с одинаковым рабочим током. Иначе разные приборы будут светить с различной яркостью или будет превышен ток какого-либо LED, и он выйдет из строя.

Что касается подключения светодиодов «рассчитанных на 12 В» то лучше установить их «рабочее напряжение» опытным путем. Для этого их надо подключить к лабораторному блоку питания и, постепенно поднимая напряжение, контролировать потребляемый ток. Напряжение, при котором рабочий ток будет достигнут, можно использовать для расчета токоограничивающего резистора.

Большинство маломощных светодиодов нормально работают и от 3 и тем более от 5 вольт. Выполнить для них расчет токоограничивающих сопротивлений можно по приведенной выше формуле.

При изготовлении конструкций с автономными источниками питания, особенно если в них используются сверхъяркие «мощные» LED, такой подход не приемлем. Мощность, рассеиваемая на гасящем резисторе, значительно сокращает время работы устройства.

Поэтому в современных ручных фонарях, работающих от низковольтных батарей применяют электронные преобразователи напряжения – драйверы. Потери в драйверах намного ниже, чем на токоограничивающих резисторах. Сейчас драйверы доступны и их можно легко найти в магазинах.

Разновидности блоков питания для светодиодов и процедура их подключения своими руками

Имея некоторые познания в электронике и навыки работы с паяльником, простой драйвер можно изготовить самостоятельно. Одна из простых схем преобразователя для мощного светодиода приведена ниже.

Подключение светодиодов к бортовой сети автомобиля не имеет существенных отличий от подключения к другим источникам питания. Просто не нужно забывать, что аккумуляторная батарея автомобиля в нормальном состоянии выдает не 12 Вольт, а примерно 14 Вольт.

Еще при подключении надо помнить, что не в каждом автомобиле надежно работает система стабилизации напряжения бортовой сети. Поэтому при расчетах гасящих резисторов лучше принимать напряжение питания равным 15 – 17 вольт. Это несколько снизит яркость свечения, но зато значительно продлит срок службы, так как светодиод будут работать в «щадящем» режиме.

Видео о подключении

Перед подключением советуем посмотреть хорошее видео для закрепления полученных знаний. Автор подробно и доступным языком рассказывает, как подключить светодиод к 12 вольтам от блока питания компьютера, как рассчитать резистор и другие нюансы.

В заключении можно сказать, что при подключении сверхъярких светодиодах нужно принимать во внимание следующие соображения:

  • важнейшим параметром светодиода является его рабочий ток;
  • на гасящих резисторах бесполезно рассеивается энергия;
  • применяя последовательное подключение можно уменьшить потери, одновременно уменьшив количество и мощность применяемых резисторов;
  • в бортовой сети автомобиля не 12 Вольт, а несколько больше, и для надежной работы подключаемых светоизлучающих диодов нужно обязательно учитывать этот фактор.

Запомнив все вышеперечисленные аспекты подключения, Вы с легкостью запитаете любой светодиод, в любом количестве, от любого источника питания постоянного тока 12 Вольт.

Блок питания компьютера — это замечательный источник питания для светодиода или линейки из светодиодов, поскольку он вырабатывает стабилизированное напряжение 5 вольт (В) и 12 В.

ЧИТАТЬ ДАЛЕЕ:  Можно ли подключить домашний светильник без заземления

Итак, разъем имеет четыре контакта, к которым подходят четыре же провода: два из них черные — это «ноль», один красный выдает напряжение 5 вольт, и один желтый выдает 12 вольт.

Рассмотрим схему подключения одного светодиода.

Подключение светодиода к источнику 5 вольт При питании от 5 В последовательно со светодиодом необходимо включить ограничительный резистор номиналом от 100 до 200 Ом.
Подключение светодиода к источнику 12 В При питании от 12 В последовательно со светодиодом требуется включить ограничительный резистор номиналом от 400 до 900 Ом.

Рассмотрим схему подключения двух светодиодов.

Подключение двух светодиодов к питанию 5 вольт При питании двух светодиодов от 5 вольт, в схему надо включить резистор до 100 Ом. Некоторые светодиоды в такой схеме будут светиться слишком тускло (даже без резистора).
Подключение двух светодиодов к питанию 12 вольт При питании двух светодиодов от 12 В, в схему надо включить резистор от 250 до 600 Ом.

Рассмотрим схему подключения трех и четырех светодиодов.

Подключение трех светодиодов к питанию 12 В При питании трех светодиодов от 12 В, следует использовать резистор номиналом от 100 до 250 Ом.
Подключение четырех светодиодов к питанию 12 В Некоторые светодиоды в такой схеме включения будут светиться слишком тускло (даже без резистора).

Универсальный принцип расчета ограничительного резистора описан в статье «Методика расчета питания светодиода».

Выше приведены схемы последовательного включения светодиодов. Существуют также способы параллельного включения светодиодов. Обратите внимание, что под параллельным включением подразумевается схема в которой, когда аноды и катоды всех светодиодов непосредственно сходятся в две точки (два пучка).

Такие схемы, как правило, не экономичны и небезопасны, как для блока питания, так и для светодиодов. Кроме того, схемы параллельного включения более сложны в расчетах, требовательны к источнику питания, поэтому мы будем пользоваться ими только в особых случаях. Просто посмотрим как выглядит такая схема.

Подключение трех светодиодов к питанию 12 В При паралельном включении светодиодов следует использовать только одинаковые светодиоды, с минимальным разбросом характеристик. Сопротивление ограничительного резистора должно быть рассчитано и подобрано с высокой степенью точности. В случае выхода из строя одного из светодиодов — остальные могут выгореть по очереди друг за другом в считанные минуты.

Кратко об эффективности

Эффективностью осветительного прибора принято считать соотношение вырабатываемого светового потока (измеряется в люменах) к потребляемой электроэнергии (ватт). Качественная лампа с нитью накала имеет эффективность около 16 люменов на ватт, флуоресцентная (энергосберегающая) — в четыре раза больше (64 лм/Вт), для длинных дневных ламп этот показатель в районе 80 лм/Вт.

КПД сверхярких светодиодов, выпускающихся массово на текущий момент, примерно такой же, как у ламп дневного света. Обратите внимание, что мы говорим именно про массовую продукцию. Что касается теоретического предела для сверхярких светодиодных источников, то он определен порогом в 320 лм/Вт.

Как обещают многие производители, в ближайшие несколько лет КПД можно будет повысить до уровня 213 лм/Вт.

Какая мощность нужна

Блок питания может
работать долго, стабильно и надежно только в том случае, когда будет правильно
рассчитан по мощности в соответствии со следующими правилами:

  1. Для начала нужно определиться, сколько и каких светодиодов будет входить в схему. Например, один метр лед-полоски типа SMD 5050 с 60 светодиодами потребляет 14 ватт.
  2. Далее нужно подсчитать общую потребляемую нагрузку. Если всего будет использовано 5 метров такой ленты из светодиодов (из рассмотренного выше примера), то общая мощность составит 14х5 = 70 Вт.
  3. Теперь нужно определить практическую мощность блока питания. Она должен быть на 20% больше. В рассматриваемом случае (70 Вт х 0,2) 70 Вт = 84 Вт.

При неправильном
расчете блока питания светодиоды начнут постоянно перегреваться, что в конечном
итоге приведет их к быстрому выходу из строя или ухудшению свечения.

Разновидности блоков питания для светодиодов и процедура их подключения своими руками

Драйвер и блок питания для светодиодов – совершенно различные устройства. Первый, как правило, выполняет функцию выпрямления и стабилизации тока на выходе, а второй к тому же понижает его до необходимого значения.

ЧИТАТЬ ДАЛЕЕ:  Проход дымохода через кровлю из металлочерепицы как правильно вывести трубу на крыше

Особенности монтажа

  1. Номинальному напряжению на выходе.
  2. Мощности.
  3. Степени герметичности и материалу.
  4. Типу электропреобразования (трансформаторные и импульсные).

Наибольшее распространение по первому признаку получили блоки питания на 12 В, хотя существуют модификации на 24, 48, 36 и 5 вольт. При выборе подобного устройства для светодиодов, установленных в конкретных условиях, большое значение имеет его внешнее исполнение, уровень защиты, материала и исполнение корпуса.

По этим параметрам модули разделяются на следующие виды:

  1. Не защищенный
    (открытый). Его корпус выполнен в форме отдельных ячеек-пустот и полностью
    пропускает воздух к компонентам. Поэтому его можно ставить только в помещения с
    низкой влажностью – спальни, гостиные, детские, прихожие, лестницы. Уровень
    защиты – IP20. Плюсы – низкая цена, лучшее естественное охлаждение,
    долговечность, высокая мощность. Минусы – большие габариты, сложность скрытого
    монтажа и невозможность установки на улицу и во влажном помещении.
  2. Герметичный. Все
    компоненты устройства (микросхема) закрыты в полностью водонепроницаемом корпусе.
    Существуют модели как в пластиковом, так и в алюминиевом исполнении. Преимущество
    первых в легком весе и компактности, недостаток – в ограниченной мощности (не
    больше 75 ватт) и плохом охлаждении. Поэтому для схемы светодиодов на 100 и
    более Вт лучше использовать экземпляры из алюминиевого сплава – лучше отдающих
    тепло в окружающее пространство. Кроме того, дюралевые изделия более прочны,
    хотя и более тяжелы, и громоздки. Герметичные блоки питания можно устанавливать
    на улицу и в любое влажное помещение – ванную, кухню, баню, бассейн. Степень их
    влагозащиты – IP67.
  3. Полугерметичные.
    Это усредненный вариант между моделями первого и второго типа. Блок питания
    имеет металлический или пластмассовый корпус со снимаемой крышкой. Внутри его
    установлен вентилятор для охлаждения (независимо от мощности). Отверстия в
    корпусе сделаны так, чтобы капли дождя или конденсата не проникали внутрь. Тем
    не менее, его не рекомендуется устанавливать под открытое небо. Степень защит
    от воды – IP54. Кроме того, устройства отличаются повышенным шумом во время
    работы, что может снижать комфорт пребывания рядом с ними. Поэтому их лучше
    устанавливать в нежилых помещениях.
Подключение четырех светодиодов к питанию 12 В Такая схема параллельного включения светодиодов практически избавлена от опасности последовательного выгорания светодиодов. В данном случае вместо ограничиельного резистора включено несколько обычных выпрямительных диодов разных марок (НЕ светодиодов).

Благодаря падению напряжения на этих диодах, до светодиодов доходит напряжение уже не 5 Вольт, а значительно меньше. Ограничительные диоды подбираются так, чтобы до светодиодов доходило напряжение равное их падению напряжения в открытом состоянии.

Эта схема используется используется автором для круглосуточного светодиодного освещения квартиры.

Предисловие

Для изготовления сверхярких светодиодных источников света может применяться один из двух способов:

  • чтобы получить свет, близкий по спектру к белому, используются три кристалла установленных в одном корпусе. Один красный, второй синий и третий зеленый;
  • применяется кристалл, излучающий в голубом или ультрафиолетовом спектре, он подсвечивает линзу покрытую люминофором, в результате излучение преобразуется в свет, близкий по спектру к природному.

Не смотря на то, что первый вариант более эффективен, его реализация обходится несколько дороже, что отрицательно отражается на распространенности. Помимо этого спектр света, излучаемый таким источником, отличается от природного.

У приборов, изготовленных по второй технологии, меньше эффективность. Стоит также учитывать, что люминофор содержит в себе сложный по составу композит на основе церия и иттрия, которые сами по себе стоят недешево. Собственно, этим и объясняется относительно высокая стоимость сверхярких светодиодов белого света. Конструкция такого устройства показана на рисунке.

Устройство сверхяркого светодиода
Устройство сверхяркого светодиода

Обозначения:

  • А – печатный проводник;
  • В – основание с повышенной теплопроводимостью;
  • C – защитный корпус устройства;
  • D – паста-припой;
  • E – кристалл светодиода, излучающий ультрафиолетовый или голубой свет;
  • F –люминофорное покрытие;
  • G – клей (может быть заменен эвтектическим сплавом);
  • H – провод, соединяющий кристалл и вывод;
  • K – отражатель;
  • J – теплоотводящее основание;
  • L – вывод питания;
  • M – диэлектрическая прослойка.

На работу сверхярких светодиодов оказывает влияние степень нагрева кристалла и самого p-n перехода. От первого напрямую зависит срок эксплуатации устройства, от второго – уровень светового потока. Поэтому для длительной службы сверхярких светодиодов необходимо организовать надежный теплоотвод, делается это при помощи радиатора.

Следует принять во внимание, что теплопроводящие основания этих полупроводников, как правило, проводят электричество. Поэтому когда устанавливается несколько элементов на один радиатор,  следует позаботиться о надежной электроизоляции оснований.

Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов
Хороший теплоотвод значительно увеличивает срок службы сверхярких светодиодов

Остальные правила монтажа практически такие же, как у обычных диодов, то есть необходимо соблюдение полярности, как при установке самой детали, так и подключении питания.

После нештатного режима прибор может остаться работоспособным, но мощность излучаемого светового потока существенно сократится. Помимо этого такой элемент с большой вероятностью станет причиной поломки и других, совместно подключенных светодиодов.

Прежде, чем говорить о драйверах для сверхярких светодиодов, коротко расскажем об особенностях их питания. В первую очередь необходимо принять во внимание следующие факторы:

  • мощность светового потока, излучаемая этими элементами, напрямую зависит от величины протекающего через них электротока;
  • для сверхярких светодиодов характерна нелинейная ВАХ (вольт-амперная характеристика);
  • температура оказывает сильное влияние на ВАХ этих полупроводниковых приборов.

Ниже показано изменение ВАХ при температуре полупроводникового элемента (сверхяркий smd-светодиод) 20 °С и 70 °С.

Изменение характеристик от влияния температуры
Изменение характеристик от влияния температуры

Как видно из графика, при подаче на полупроводник стабильного напряжения величиной 2 В, электроток, проходящий через него, меняется в зависимости от температуры. При нагреве кристалла 20°С он будет равен 14 мА, когда температура повысится до 70°С, этот параметр будет соответствовать 35 мА.

Результатом такой разницы будет изменение мощности светового потока при одном и том же питающем напряжении. Исходя из этого, необходимо стабилизировать не напряжение, а электроток, проходящий через полупроводник.

Такие блоки питания называются светодиодными драйверами, они представляют собой обычные стабилизаторы тока. Это устройство можно приобрести готовое или собрать самостоятельно, в следующем разделе мы приведем несколько типичных схем драйверов.

Процедура подключения

После того, как расчет
мощности блока питания произведен, можно приступать к монтажу светодиодов,
соединению проводки, трансформатора и другого необходимого оборудования (для rgb-ленты
потребуется контроллер). В ходе сборки схемы нужно руководствоваться следующими
правилами:

  1. Не подключать лед-полоску длиной более 5 м.
  2. Для соединения двух отрезков более пяти метров использовать параллельную сборку.
  3. При соединении контактов светодиодной ленты трансформатором соблюдать полярность.
  4. Для связи светильника с блоком питания можно использовать проводники сечением 1,5 см².
  5. Для подключения rgb-ленты между ней и трансформатором устанавливается контроллер.
  6. При параллельном включении нескольких светильников для экономии можно использовать несколько небольших по мощности блоков питания, чем один большой.

Подключение светодиода к питанию 5 и 12 Вольт: схемы с описанием

Схема подключения
светодиодов через блок питания достаточно проста и доступна любому желающему
своими руками. Для этого необходимо приобрести исходные компоненты и
подготовить элементарный набор инструмента:

  1. Лед-светильник, ленту, светодиод.
  2. Блок питания (обозначаемый в схеме – БП), подобранный по номиналу и мощности.
  3. Двухжильный провод (четырех- для rgb-полоски, трех- для сети с заземлением).
  4. Электрощуп, набор отверток, монтажный инструмент – для установки светильника.
  5. Коннекторы для соединения контактов.

Далее отдельные светодиоды
или лэд-полоска монтируется параллельно или последовательно в соответствии с
планом и соединяется через контакты посредством проводников и коннекторов с
блоком питания (через контроллер, если установлена трехцветная модель ленты).
Затем схема подключается к сети и проверяется на работоспособность.

Разновидности блоков питания для светодиодов и процедура их подключения своими руками

Использование светодиодов для освещения и индикации — это надежное и экономичное решение.

Светодиоды имеют очень высокий КПД, надежны,экономичны, безопасны, долговечны в сравнении с лампами накаливания и люминесцентными лампами. В данной статье рассматриваются способы включения светодиодов. Описываются способы питания светодиода от компьютера.

Светодиод — это, во-первых, диод. И точно так же как у обычного диода, у светодиода есть два вывода (контакта питания): анод (плюс) и катод (минус). Это связано с тем, что светодиод является полупроводником, то есть, проводит электрический ток только в одну сторону (от анода к катоду), и не проводит в обратную (от катода к аноду).

Итак, для того, чтобы светодиод засветился, надо пропускать через него электрический ток в направлении от анода к катоду. Для этого следует подать на его анод положительное, а на катод — отрицательное напряжение.

Тут и начинается самое неприятное. Оказывается, что светодиод нельзя подключать к источнику питания напрямую, поскольку это приводит к немедленному сгоранию светодиода.

Причина сего поведения кроется в следующем.

Выражаясь простым бытовым языком, светодиод является очень жадной и неразумной личностью: получив неограниченное питание он начинает потреблять такую мощность, которую физически не способен выдержать.

Как мы все уже догадались, для нормальной работы светодиоду нужен строгий ограничитель. Именно с этой целью последовательно со светодиодом устанавливают резистор, который служит надежным ограничителем тока и мощности. Этот резистор называют ограничительным.

Во-первых, светодиоды можно разделить по цветам: красный, желтый, зеленый, голубой, фиолетовый, белый. Большинство современных светодиодов выполнено из бесцветного прозрачного пластика, поэтому невозможно определить цвет светодиода не включив его.

Характеристики и сферы применения светодиодов Cree XML T6

Во-вторых, светодиоды можно разделить по номинальному току потребления. Широко распространены модели с током потребления 10 миллиампер (мА) и 20 мА. Следует помнить, что светодиод не в состоянии контролировать потребляемый ток. Именно поэтому мы вынуждены использовать ограничительные резисторы.

В-третьих, светодиоды можно разделить по такому параметру, как падение напряжения в открытом состоянии при номинальном токе. Несмотря на то, что про этот параметр нередко забывают — его влияние весьма и весьма значительно. Благодаря этому параметру иногда можно избавиться от ограничительного резистора.

Для подключения светодиодов в качестве простого освещения удобно использовать разъемы блока питания, выдающие 5 и 12 вольт. Для подключения светодиодов в качестве светомузыки удобно использовать LPT порт компьютера.

Основные параметры

Блок питания
предназначен для понижения и выпрямления тока из бытовой сети и питания
светодиодов на 12-48 вольт. Они могут различаться сразу по нескольким
признакам:

  1. Номинальному напряжению.
  2. Мощности.
  3. Уровню влагозащиты.

Негерметичные модули устанавливаются
в помещении и имеют хорошее естественное охлаждение. Закрытые блоки
предназначены для улицы и влажных помещений. При расчете на большую мощность
лучше подбирать алюминиевые модели с хорошим отводом тепла. Полугерметичные модели
подойдут для нежилых и неотапливаемых помещений.

При расчете мощности блока питания нужно учитывать суммарную нагрузку всех светодиодов в схеме и добавлять к полученному значению 20 процентов. Подсоединить приборы освещения к ним можно своими руками параллельным или последовательным способом.

Если вы хотите добавить
полезную информацию о выборе и монтаже блоков питания для светодиодов и
лед-светильников, обязательно напишите в форме для комментариев ниже.

Стандартная яркость
светового потока для xml t6 – 280 люмен. При этом значение параметров силы тока
– 700 мА, падение напряжения – не выше 2,9 В, угол рассеивания – 120-130
градусов, цветовой индекс – порядка 85 Ra. Лабораторные опыты показали, что при
плавном повешении значения последней характеристики, светимость также будет
увеличиваться:

  1. При 1 А – около 390 лм.
  2. При 1,5 А – 560 лм.
  3. При 2 А – порядка 700 лм.

Характеристики и сферы применения светодиодов Cree XML T6

Следует учитывать, что одновременно с изменением рабочих параметров от номинального значения, будут отклоняться и все сопутствующие характеристики – в первую очередь – рост величины падения напряжения, ухудшение светового потока и повышение нагрева.

Название Спектральный
диапазон, К
Группа Световой
поток, люмен
Белый (холодный) 5-8,3 тыс. Т5 265
Т6 280
U2 320
Белый (нейтральный) 3,7-5 тыс. T4 245
T5 260
Белый (стандарт – CRI 80) 2,6-4,3 тыс. T2 210
T3 220
Белый (теплый) 2,6-3,7 тыс. T2 200
T3 225
Белый (CRI 85) 2,6-3,2 тыс. S4 165
S5 175
S6 180
Белый (CRI 90) 2,6-3,2 тыс. S4 165
S5 170
S6 180

Максимальной
востребованностью отличаются xml-диоды Т6. Они характеризуются белым холодным
свечением при мощности потока почти в 300 люмен. Меньшей светосилой обладают
кристаллы S4 (порядка 160 лм) с характерным желтым оттенком, а большей – U2
(около 320 лм), при этом имеют хорошо видимый фиолетовый тон светового потока.

Светодиод xml t6 от
американского производителя Cree характеризуется прежде всего большой яркостью
(до 300 лм) и долговечностью (до 100 тыс. часов). Поэтому он является самым
востребованным в своем сегменте как у производителей светотехники с мировым
именем, так и у рядовых потребителей. При стандартных условиях эксплуатации –
силе тока в 700 мА и напряжении не выше 2,9 вольт лед-кристалл отличается
следующим набором параметров:

  1. Светимость 280 лм.
  2. Цветопередача – 85 Ra.
  3. Угол рассеивания – 125 градусов.

При этом основные
светотехнические характеристики диода задаются принадлежностью его к
конкретному цветовому спектру и обозначается «бином». Всего выпускается 15
групп и 6 наборов – с минимальной яркостью от S4 160 лм до U2 320 лм. Чтобы
полупроводниковый лед-кристалл оптимально проявлял заявленные параметры, для
его работы требуется драйвер с напряжением на входе 4,2 вольта и силой тока на
выходе не больше 3 А. Xml t6 широко применяется в качестве светоисточника в
фонарях, лампах, оптике, освещении, подсветке и спецприборах.

Если вы хотите добавить
к этой информации свои мысли или просто у вас есть желание поделиться своим
опытом по теме xml t6, обязательно
напишите в комментариях ниже.

Самодельный светодиодный драйвер

Предоставим вашему вниманию несколько вариантов драйверов на основе специализированных микросхем компании Monolithic Power System, использование которых существенно упрощает конструкцию. Схемы приводятся в качестве примера, полное описание типового включения можно найти в даташит на микросхемы.

Вариант первый на базе понижающего преобразователя МР4688.

Пример включения МР4688
Пример включения МР4688

Данный драйвер может работать с напряжениями от 4,5 до 80 В, порог максимального выходного электротока 2 А, что позволяет запитать светильник на сверхярких светодиодах большой мощности. Уровень электротока, проходящего через светодиоды, регулируется сопротивлением RFB . Реализация ШИМ-диммирования с частотой 20 кГц позволяет плавно изменять протекающий через светодиод электроток.

Характеристики и сферы применения светодиодов Cree XML T6

Второй вариант драйвера на базе микросхемы МР2489. Ее компактный корпус (QFN8 или TSOT23-5) делает возможным размещение драйвера в цоколе MR16, используемый галогенными лампами, что позволяет заменить последние светодиодными. Типовая схема подключения МР2489 показана на рисунке.

Драйвер на базе МР2489
Драйвер на базе МР2489

Приведенная выше схема позволяет включать два параллельных светодиода, у каждого из которых рабочий ток 350 мА.

Последний вариант драйвера на базе микросхемы МР3412, который может быть использован в переносных фонариках. Отличительная особенность такой схемы – возможность работы от пальчикового элемента питания АА.

Драйвер для фонарика на базе МР3412
Драйвер для фонарика на базе МР3412

Значение яркости,
плотности и прочих свойств светового потока xml t6 задается параметрами его
драйвера. Официальный производитель рекомендует, чтобы устройство имело
следующие характеристики:

  1. Напряжение входного тока – 4,2 вольт.
  2. Сила выходного тока – не более 3 ампер.

Главное, что должен обеспечивать подобный драйвер –это строгая стабилизация параметров входного и выходного тока. Только в таком случае светодиод xml t6 способен проявлять заданные изготовителем светотехнические параметры и заложенный в него большой срок службы.

Помимо однорежимного устройства, бывают модели, позволяющие изменять рабочие характеристики с целью изменения мощности свечения. Однако необходимо проверять, чтобы изменяемые параметры находились в рамках, установленных производителем значений.

Достоинства xml t6

Светодиод xml t6 базируется
на стандартной квадратной матрице с размером стороны в пять миллиметров. Основа
зеленного оттенка также отличает его от предыдущих версий, на которых
применялась серая подложка. Сверху t6 led-кристалл покрыт радиусной линзой
диаметром шесть мм. Среди явных его преимуществ выделяются:

  1. Сильный световой поток при мощности потребления не выше 10 ватт.
  2. Показатель сопротивления нагрева – максимум 2,5°С на 1 Вт.
  3. Двухмиллиметровая подложка.
  4. Форма и размеры охлаждающей основы на базе дюралюминиевого сплава – звездочка на 20 мм или круг на 16 мм.

Где применяются светодиоды xm l t6

Как правильно подключить сверхяркие светодиоды к блоку питания?

Светодиоды xml t6 имеют
широкую область применения, но наибольшее распространение они получили в
производстве:

  1. Фонарей повышенной
    мощности с АКБ.
  2. Оптики на всех
    видах транспортных средств.
  3. Ярких
    аварийно-оповестительных световых устройств для пожарных машин, скорой помощи,
    спецтехники.
  4. Габаритных
    огней, фар дальнего и ближнего света на авто.
  5. Всевозможных
    внутренних и наружных основных, дополнительных и декоративных систем освещения.

Одним из ярких примеров
широкого использования лед-кристаллов xml t6
от компании Cree является
ручной фонарь с
алюминиевым корпусом Ultra
Fire. Среди его явных преимуществ выделяются – долговечность светового
элемента (до 100 тыс. часов), возможность настройки фокуса потока, питание от
АКБ, пять режимов эксплуатации.

Оцените статью
MALIVICE.RU