Люминесцентные лампы, их плюсы и минусы

Схема подключения

Разработка таких устройств велась для минимизации конструкции светильника и замещения крупногабаритного дросселя и стартера одним единственным модулем, который подключается к сети питания переменного тока и к электродам люминесцентной лампы.

ЭПРА лишены всех минусов классических схем подключения.

Существуют модули, предназначенные для одновременного подключения четырех ламп.

Подключение ЭПРА к четырем лампам

Как в случае с одной или двумя лампами, схема не требует никаких дополнительных элементов. Модуль ЭПРА соединяется напрямую с люминесцентной лампой.

Схема подключения ЭПРА с одной лампой

Люминесцентные лампы, их плюсы и минусы

Схема подключения ЭПРА 4х18 Вт (Пример:Navigator NB-ETL-418-EA3)

Люминесцентные лампы, их плюсы и минусы

Схема подключения ЭПРА 2х36 Вт (Пример:ELECTRONIC BALLAST ETL-236)

Люминесцентные лампы, их плюсы и минусы

Схема подключения ЭПРА 2х18 Вт (Пример:Navigator NB-ETL-218-EA3)

Во всех случаях выключатель рекомендовано ставить именно на фазовый провод. При наличии нуля потенциал может сохраняться. Об этом будет говорить слабое мерцание ламп в выключенном положении. С рабочими, но дешевыми ЭПРА иногда тоже наблюдается такое явление. Возможно, что причина в том, что с электролитического конденсатора не ушел полностью заряд. В этом случая поможет простая доработка: достаточно зашунтировать электролитический конденсатор резистором на сотню килоом.

Как я уже говорил выше, для пуска металлогалогенной лампы необходимо импульсное зажигающее устройство, а для ограничения тока через нее требуется ПРА (балласт). Первое включается параллельно лампе, второй — последовательно с ней.

Схема включения металлогалогенных ламп с двух- и трехвыводным ИЗУ

Обычно подобная схема наносится прямо на корпус балласта и ИЗУ, поэтому собрать металлогалогенный светильник своими руками не составляет никакого труда. Для этого достаточно обычной отвертки и указателя напряжения для определения нуля и фазы в сети.

Единственное, необходимо учитывать, что лампа и балласт греются довольно сильно: первая до 300, второй до 100-120 градусов. Поэтому, конструируя светильник, необходимо предусмотреть вентиляцию оборудования (обычно достаточно просто вентиляционных отверстий), а сам фонарь размещать вдали от легковоспламеняющихся предметов.

Отличие трехвыводного ИЗУ от двухвыводного состоит в том, что оно подает высоковольтный разряд только на лампу. В то время как двухвыводное подвергает бесполезному высоковольтному удару еще и балласт. Таким образом, трехвыводной прибор стоит дороже, но работает более корректно, существенно продлевая жизнь светильника.

При использовании электромагнитного балласта (дросселя) для уменьшения реактивных потерь и некоторого повышения КПД параллельно светильнику желательна установка компенсационного конденсатора, обозначенного на схеме штрихпунктиром. Рабочее напряжение его должно быть не ниже 400 В (для ламп на 380 В – 600 В), а сам он должен быть бумажным неполярным. Емкость конденсатора выбирается исходя из мощности лампы. Для ДРИ-250, к примеру, хватит 35 мкФ, для ДРИ-400 емкость можно увеличить до 45 мкФ.

люминесцентная лампа

И еще один совет. Устанавливай лампу ДРИ только в хлопчатобумажных перчатках или при помощи чистой тканевой салфетки. Дело в том, что внешняя колба прибора нагревается до 300 градусов, а если прибор одноколбовый, то и до 1200. «Пальчики», которые ты оставишь на колбе, сгорят и образуют слой нагара, плохо проводящий тепло.

Эту лампу можно выбросить из-за трещины, появившейся в результате локального перегрева грязного стекла

Вот мы и разобрались с металлогалогенными лампами. Если ты дочитал статью до конца, то теперь знаешь, как она работает, как включается и чем отличается от других газоразрядных источников света.

Схемы включения ламп дневного света подразумевают наличие электромагнитного пускорегулирующего аппарата или дросселя (представляющего собой своеобразный стабилизатор) со стартером. Конечно, в наше время есть люминесцентные лампы без дросселя и стартера и даже приборы с улучшенной цветопередачей (ЛДЦ), но о них чуть позднее.

Итак, стартер выполняет следующую задачу: он обеспечивает в схеме короткое замыкание, разогревая и электроды, обеспечивая тем самым пробой, при помощи которого облегчается розжиг лампы. После того как электроды достаточно разогрелись, стартер обеспечивает разрыв цепи. А дроссель ограничивает ток во время замыкания, обеспечивает высоковольтный разряд для пробоя, зажигая и поддерживая стабильное горение лампы после запуска.

Схема бездроссельного подключения ЛДС
Схема бездроссельного подключения ЛДС

Чтобы ненадолго продлить работу сгоревшего светового прибора, существует вариант, при котором возможно подключение лампы дневного света без дросселя и стартера (схема подключения на рисунке). Он предусматривает использование умножителей напряжения.

https://www.youtube.com/watch?v=Pkl0HKouo8w

Подача напряжения происходит после короткого замыкания нитей накаливания. Выпрямленное напряжение становится больше вдвое, чего вполне хватает для запуска лампы. С1 и С2 (на схеме) необходимо подобрать для 600 В, а С3 и С4 – под напряжение в 1 000 В. По прошествии некоторого времени пары ртути оседают в области одного из электродов, в результате чего свет от лампы становится менее ярким. Лечится это путем изменения полярности, т. е. необходимо просто развернуть реанимированную перегоревшую ЛЛ.

Задача этого элемента, обеспечивающего питание люминесцентных ламп – увеличение времени разогрева. Но долговечность стартера небольшая, он часто сгорает, а потому имеет смысл рассмотреть возможность того, как включить люминесцентную лампу без него. Для этого нужна установка вторичных трансформаторных обмоток.

Существуют ЛДС, которые изначально предусмотрены для подключения без стартера. На таких лампах имеется маркировка RS. При установке такого прибора в светильник, оборудованный этим элементом, лампа быстро горит. Происходит это по причине необходимости большего времени на разогрев спиралей таких ЛЛ. Если запомнить эту информацию, то уже не возникнет вопроса, как зажечь люминесцентный светильник, если произошло перегорание дросселя или стартера (схема соединения ниже).

Схема безстартерного подключения ЛДС
Схема бесстартерного подключения ЛДС

Люминесцентные лампы: параметры, устройство, схема, плюсы и минусы по сравнению с другими

Стандартная схема подключения люминесцентной лампы значительно сложнее, нежели процесс включения традиционной лампы накаливания.

Требуется применять особые пусковые устройства, качественные и мощностные характеристики которых оказывают непосредственное влияние на сроки и удобство эксплуатации осветительного прибора.

вариант подключения лампы

Схема подключения люминесцентных ламп без дросселя и стартера

В настоящее время практикуется несколько схем подключения, которые отличаются не только по уровню сложности выполняемых работ, но и набором используемых в схеме устройств:

  • подключение с применением электромагнитного балласта и стартера;
  • подключение с электронным пускорегулирующим аппаратом.

Второй вариант подключения предполагает генерирование высокочастотного тока, а сам непосредственный запуск и процесс работы осветительного прибора запрограммированы электронной схемой.

чертеж подключения лампочки

Схема подключения лампы с дросселем и стартером

Чтобы правильно выполнить подключение осветительного прибора, необходимо знать устройство дросселя и стартера, а также учитывать правила подключения такого оборудования.

Принцип действия

Как уже говорилось, схема питания лампы дневного света принципиально отличается от подключения приборов накаливания. Дело в том, что электроэнергия здесь преобразовывается в световой поток посредством протекания тока сквозь скопление паров ртути, которые смешаны с инертными газами внутри колбы. Происходит пробой этого газа при помощи высокого напряжения, поступающего на электроды.

Как это происходит, можно понять на примере схемы.

Составляющие люминесцентного светильника
Составляющие люминесцентного светильника

На ней можно увидеть:

  1. пускорегулирующий аппарат (стабилизатор);
  2. трубка лампы, включающая в себя электроды, газ и люминофор;
  3. слой люминофора;
  4. стартерные контакты;
  5. стартерные электроды;
  6. цилиндр корпуса стартера;
  7. пластинка из биметалла;
  8. наполнение колбы из инертного газа;
  9. нити накаливания;
  10. излучение ультрафиолета;
  11. пробой.

Слой люминофора наносится на внутреннюю стенку лампы для того, чтобы преобразовать ультрафиолет, который невидим человеку, в освещение, принимаемое обычным зрением. При изменении состава этого слоя можно изменить оттенок цвета осветительного прибора.

Принцип работы стартера люминесцентной лампы

Конструкция устройства представлена компактной стеклянной колбой, заполненной инертным газом. Колба установлена внутри металлического или пластикового корпуса, с парой электродов, один из которых относится к биметаллическому типу.

Напряжение на зажигание стартера не должно быть выше, чем номинальное напряжение питающей сети. В процессе подключения схемы запуска к питающей электросети, значительная часть напряжения переходит на разомкнутые стартерные электроды. Под воздействием напряжения обеспечивается образование тлеющего разряда, небольшая часть которого используется для разогрева биметаллических электродов.

принцип работы люминесцентной лампы

Схема работы стартера

Результатом нагревания становится изгиб и замыкание электроцепи, с последующим прекращением тлеющего разряда внутри стартера. Проход тока по цепи последовательно соединенных дросселя и катодов вызывает их эффективный прогрев. Временем замкнутого состояния стартерных электродов определяется продолжительность прогрева катодов любой люминесцентной лампы.

Средний срок эксплуатации стартера равен продолжительности работы осветительного прибора, но с течением времени уровень интенсивности напряжения тлеющего внутреннего разряда заметно понижается.

Общие сведения о люминесцентных лампах

Оттенок цвета люминесцентной лампы, как и светодиодной, зависит от цветовой температуры. При t = 4 200 К свет от прибора будет белым, и маркироваться она будет как ЛБ. Если же t = 6 500 К, то освещение приобретает чуть синеватый оттенок, становится более холодным. Тогда при маркировке указывается, что это лампа ЛД, т. е. «дневная».

И еще один момент, касающийся размеров. В народе люминесцентную лампу Т8 на 30 Вт называют «восьмидесяткой», подразумевая, что ее длина – 80 см, что не соответствует действительности. На самом деле длина составляет 890 мм, что на 9 см длиннее. Вообще же самые ходовые ЛЛ – это как раз Т8. Их мощность зависит от длины трубки:

  • Т8 на 36 Вт имеет длину в 120 см;
  • Т8 на 30 Вт – 89 см («восьмидесятка»);
  • Т8 на 18 Вт – 59 см («шестидесятка»);
  • Т8 на 15 Вт – 44 см («сороковка»).

Электронный пускорегулирующий аппарат

Электронный балласт в схеме питания ЛЛ заменил устаревший электромагнитный, улучшив пуск и добавив комфорта человеку. Дело в том, что более старые пусковые устройства потребляли больше энергии, часто издавали гудение, отказывали и портили лампы. К тому же в работе присутствовало мерцание по причине низких частот напряжения. При помощи электронного пускорегулирующего аппарата от этих неприятностей удалось избавиться. Необходимо разобраться, как действует ЭПРА.

Схема ЭПРА
Схема ЭПРА

Сначала происходит выпрямление тока, проходящего через диодный мост и при помощи С2 (на схеме ниже) напряжение сглаживается. Обмотки трансформатора (W1, W2, W3), включенные противофазно, нагружают генератор с высокочастотным напряжением, установленный после конденсатора (С2). В параллель к ЛЛ включен конденсатор С4. При поступлении резонансного напряжения происходит пробой газовой среды. Нить накаливания в это время уже разогрета.

Люминесцентные лампы

После того как розжиг выполнен, показания сопротивления лампы снижаются, вместе с ними падает и напряжение до уровня, достаточного для поддержки свечения. Вся работа ЭПРА по запуску занимает меньше секунды. По такой схеме работают лампы дневного света без стартера.

Конструктивные особенности, а вместе с ними и схема включения люминесцентных ламп постоянно обновляются, изменяясь в лучшую сторону в экономии электроэнергии, уменьшаясь в размерах и увеличиваясь в долговечности работы. Главное – правильная эксплуатация и умение разобраться в огромном ассортименте, предлагаемом производителем. И тогда ЛЛ еще долго не покинут рынок электротехники.

Конструкция МГЛ лампы

Металлогалогенная лампа относится к газоразрядным приборам. Она работает с использованием принципа ионизации паров ртути в смеси с галогенидами — соединениями галогенов с другими химическими элементами.

Конструктивно металлогалогенный осветительный прибор представляет собой колбу, выполненную из тугоплавкого кварцевого или керамического стекла со впаянными электродами. Колба заполняется инертными газами, в которые добавляется металлическая ртуть и галогениды тех или иных металлов. Именно они расширяют и выравнивают видимый спектр излучения прибора, а также позволяют изменить цветовую температуру и цвет свечения лампы.

Эта колба, исполняющая роль горелки, помещается в еще одну, внешнюю, заполненную инертным газом или вакуумированную. Ее задача – защита горелки от механических и температурных воздействий и поглощение ультрафиолета, который присутствует в спектре излучения ртути и при взаимодействии с окружающим воздухом образует ядовитый для человека озон. Дополнительно внешняя колба уменьшает теплопотери, существенно увеличивая КПД и ресурс работы прибора.

Существуют и одноколбовые лампы, но в этом случае для изготовления горелки применяют безозонное кварцевое стекло, отсекающее жесткое ультрафиолетовое излучение. Это, конечно, не относится к специальным  металлогалогенным приборам, предназначенным именно для получения жесткого УФ излучения.

Одноколбовая металлогалогенная лампочка промышленного назначения мощностью 2 кВт

Для подключения к электросети прибор снабжается цоколем или цоколями следующих типов:

  • E27, Е40 (цоколь Эдисона);
  • RX7s (софитный двухцокольный вариант);
  • G8.5, Е12 (штырьковые).

Приборы  мощностью 2 кВт и выше вместо цоколей имеют гибкие выводы с клеммами под винт.

Металлогалогенные осветители с цоколями различных типов

Особенности устройства

Конструкция лампочек МГЛ включает в себя несколько основных компонентов. К ним относятся:

  • Устройство ламп МГЛГорелка (разрядная трубка) — основа лампы. Эту деталь зачастую производят из особого кварцевого стекла или керамики. Трубки керамического типа обладают высокими показателями термостойкости. Разрядная горелка и электроды располагаются на наружной колбе.
  • Наружная колба — своеобразный светофильтр. Производят этот элемент из боросиликатного стекла. Такие колбы характеризуются высоким уровнем механической и термической устойчивости. Они уменьшают теплопотери разрядной трубки, обеспечивая стабильный тепловой режим.
  • Цоколь.

Запуск ламп МГЛ невозможно произвести без балласта. Для этой цели используются ПРА (электронные или электромагнитные пускорегулирующие аппараты). Применение ПРА электронного типа позволяет добиться ровного света при запуске, снижая пусковые и рабочие электротоки, а также повышая долговечность прибора.

Принцип функционирования

В качестве светящегося тела в металлогалогеновых лампах выступает плазма электродугового разряда.

Горелка заполнена соединениями галогена и инертными газами, которые, пребывая в охлажденном состоянии, собираются на ее внутренних поверхностях и имеют вид тонкой пленки. По мере увеличения температуры галогениды испаряются и расщепляются на отдельные ионы. Затем ионизированные атомы раздражаются и создают оптическое излучение.

Кроме того, инертные газы обладают буферной функцией, потому электроток может попадать в разрядную трубку даже при низких температурах. По мере того как нагревается горелка, добавки-излучатели и ртуть подвергаются испарению, регулируя тем самым спектр светового излучения и электросопротивление лампы МГЛ.

Для ионизации разряда необходимо использование особого оборудования, например, импульсных зажигающих устройств. Зажигание же производится с помощью трансформатора или дросселя с высокими показателями магнитного рассеивания.

Типы и характеристики

К сожалению, единой маркировки металлогалогенных ламп в мире не существует, каждый производитель может промаркировать прибор на свое усмотрение. Тем не менее некоторые названия МГЛ устоялись, и среди них можно сориентироваться. В России металлогалогенные лампы принято маркировать буквами ДРИ(Ш) с последующим указанием мощности в ваттах, где:

  • Д – дуговая;
  • Р – ртутная;
  • И – йодидная;
  • Ш – шаровая форма горелки.

Лампа ДРИШ-450 – дуговая ртутная йодидная с горелкой шаровой формы мощностью 450 Вт

 Металлогалогенные источники света

Рабочее напряжение на лампочках может не указываться. По умолчанию для приборов мощностью до 2 000 Вт оно составляет 220 В, для приборов 2 000 Вт и выше – 380 В.

Что касается зарубежных производителей, то у них самое распространенное обозначение металлогалогенных ламп – HMI (англ. metal halide lamp) или HM с последующим указанием мощности.

По остальным конструктивным характеристикам приняты следующие обозначения:

  1. SE — одноцокольная.
  2. DE – двухцокольная (софитная).
  3. BH – рабочее положение горизонтальное.
  4. BUD – рабочее положение вертикальное.
  5. U – рабочее положение любое.
  6. Т – колба цилиндрическая.
  7. Е – колба эллипсоидная.
  8. ЕТ – колба эллипсоидно-трубчатая.
  9. ВТ – колба бульбовидно-трубчатая.
  10. R – колба рефлекторная.
  11. P – колба параболическая.

Дополнительно на металлогалогенной лампе может стоять ее цветовая температура в Кельвинах.

Металлогалогенная лампа с цилиндрической колбой мощностью 400 Вт

Маркировка на самой лампе может быть неполной, поэтому при покупке внимательно изучи упаковку или сопроводительную документацию, если она есть. Особое внимание обрати на рабочее положение прибора: лампа с горизонтальным рабочим положением недолго проработает вертикально, и наоборот.

Выводы по совокупности плюсов и минусов

Как следует из самого названия, в люминесцентных лампах (ЛЛ) основным источником целевого светового излучения является люминофор — по происхождению слово восходит к латинскому lumen «свет» и древнегреческому φορός «несущий». Однако для того чтобы верно понять и оценить «генетическое происхождение» плюсов и минусов ЛЛ потребуется значительно углубиться в предмет рассмотрения.

Подводя итоги, можно сказать, что, как и любое электронное изделие, электронный пускатель обладает достоинствами и недостатками.

  • Больший срок эксплуатации люминесцентной лампы.
  • Больший КПД, меньшие потери (как минимум, отсутствует постоянное перемагничивание сердечника дросселя). Экономия до 30 процентов.
  • Нет реактивных выбросов в сеть питания. Не создают помехи другой аппаратуре.
  • Отсутствие мерцания при пуске и эффекта стробирования при работе.
  • Автоматика отключается при выходе лампы из строя.
  • Плавный прогрев электродов.
  • Стабильный световой поток при скачках напряжения.
  • Возможность работы и на постоянном токе (не все модели).
  • Имеют защиту от короткого замыкания.
  • Отсутствие характерного шума.
  • Возможен запуск ламп при низких температурах окружающей среды.

Человек по своей природе воспринимает окружающий мир по большей части через зрение.

Главным условием восприятия является освещённость. Естественное освещение, которое природного происхождения наиболее оптимально для глаз. Но оно не безгранично и «работает с интервалами». Световой день сменяется ночью.

В эти периоды нашим спасением является искусственное освещение. Оно сегодня представлено широким спектром. Лампы накаливания, светодиоды, галогенные, люминесцентные и энергосберегающие аналоги, которые есть здесь – всё это наиболее используемые сегодня излучатели света.

Наверное, малознакомыми по названию вариантами из этого перечня выступают люминесцентные лампы. Хотя, все мы ими просто окружены, а сфера их применения просто безгранична. В народе их чаще называют дневными лампами, поскольку излучаемый ими свет очень приближен к естественному дневному освещению. За это качество они нашли массовое применение в промышленности, общественности, коммерции и жилье.

Плюсы применения люминесцентных ламп.

  1. Большая световая отдача. Если сравнивать их с лампами накаливания, то при той же мощности, люминесцентные аналоги отдают в 1,5–2 раза больше света.
  2. Излучаемое ими освещение близко к естественному. При таком свете нет нагрузки на зрение, глаза не устают. Выпускаемые производителями два вида ламп различной цветности, позволяют осуществлять оптимальный подбор по воздействию на глаза. В продаже они подразделены на тёплые и холодные оттенки излучаемого света.
  3. Не чувствительны к броскам тока. Отсюда и больший, чем у ламп накаливания срок службы. Средняя продолжительность работы – 8000 часов.
  4. Среди ламп освещения – люминесцентный вариант считается недорогим. Цена на лампу дневного света чуть выше цены лампы накаливания, а превосходство по работе отличается значительно. Средний срок работы обыкновенной лампы накаливания – 1000 часов. Как видим у люминесцентных ламп очевидное превосходство при такой же низкой стоимости.
  5. Отсутствие ослепляющего эффекта. На источник лиминесцентного освещения можно спокойно взглянуть. Их свечение мягкое, не давящее на глаза.
  6. Низкая температура колбы. В работе люминесцентное освещение тёплое. Температура поверхности около 50 градусов. Такая температура не способна воспламенить какую-либо поверхность, а следовательно, данный тип ламп можно считать пожаробезопасным. Сюда же можно добавить то, что при их замене обжечься просто невозможно.

Казалось бы люминесцентные лампы – идеальный вариант. И дёшевы, и долго служат. Однако – нет. Кажущаяся идиллия нарушается недостатками. Они присутствуют и о них ниже.

Минусы применения люминесцентных ламп.

  1. Сложное схематическое включение. Чтобы зажечь лампу будут нужны, как минимум – дроссель и стартер. Это затратно и хлопотно. Подключением двух концов тут не обойдёшься. В этом плане, упоминаемая в статье лампа накаливания, явно выигрывает.
  2. Снижение световой мощности. Данный эффект наблюдается к окончанию срока службы.
  3. Потери в потребляемой энергии. Она расходуется не только на зажигание и работу газов, содержащихся в колбе, но и на пусковые элементы. К потребляемой мощности прибавляется ещё процентов 30 от этого значения. Существенно? В плане экономии, видимо да.
  4. Нуждаются в обязательной утилизации. Они содержат ртуть и просто разбить, выкинуть их будет не благоразумно и опасно, как для собственного здоровья, так и для окружающей среды.
  5. Отмечается шумность в работе. Щелчки при зажигании, гул похожий на фон переменного тока. Такой эффект может сильно досаждать. Связано это с работой пусковых элементов. Гул от дросселя, щелчки от стартера.
  6. При сильном морозе или понижении напряжения лампа частенько отказывается работать. Инертный газ в колбе, при таких условиях не может зажечься.

Итак, перед нами прямо равенство какое-то. Количество плюсов и минусов одинаково. Отсюда и возникающие разногласия по практике их использования.

Однако всё та же практика показывает, что в большинстве случаев данный тип ламп просто незаменим. В 21 веке их не сменили ни светодиоды, ни энергосберегающие. А значит – люминесцентным лампам в нашем настоящем – однозначное да.

Сам по себе люминофор никакого света не излучает, он лишь трансформирует электромагнитное излучение одной длины волны в другое, обычно — более длинноволновое (например, невидимый ультрафиолет — в любой оттенок видимого света или вообще ИК). Эффективность этого преобразования характеризуется КПД люминофора: отношение числа сгенерированных квантов к общему числу поглощённых (чем это отношение ближе к единице, тем лучше люминофор).

Во времена изобретения ЛЛ одним из самых эффективных источников типично возбуждающего люминофора УФ-излучения был электрический разряд в газах — и отсюда пошло самое первое разделение этих ламп: дуговой разряд в парах ртути высокого давления с последующим переизлучением на внешней колбе обусловил появление ДРЛ (Дуговых Ртутных Ламп), а «тлеющий» разряд в парах ртути низкого давления привёл к появлению «ламп-трубок», которые ныне и считаются «настоящими» ЛЛ.

Если лишить трубку ЛЛ люминофора, то в рабочем состоянии наблюдатель увидит лишь очень бледное фиолётово-зелёное свечение, поскольку подавляющая доля подводимой электрической энергии обращается в различные виды ультрафиолета (от «жёсткого» до «мягкого» — и именно такой свет является основным назначением т.н. «бактерицидных» ламп, используемых в больницах для «кварцевания»).

Поскольку обычное (за исключением т.н. «увиолевого») стекло очень хорошо поглощает УФ, люминофор необходимо наносить на внутреннюю поверхность трубки ЛЛ, поэтому во время работы ламп он постепенно разрушается как под действием собственно разряда/УФ, так и из-за паров ртути.

Устройство люминесцентной лампы

https://www.youtube.com/watch?v=XYmIaLbYYsU

Поскольку при обычных условиях ртуть является не газом а жидкостью, для начала работы лампы её надо испарить и распределить по всей длине трубки, для чего используется два технологических приёма:

  1. Во-первых, помимо ртути трубка дополнительно заправляется небольшим количеством инертного газа (например, аргона) — он нужен для старта и выхода лампы на «рабочий» режим.
  2. Во-вторых, с обеих сторон трубки лампы запаяны две нагревательные спирали — они испаряют ртуть до тех пор, пока лампа не прогреется и разряд не сможет поддерживать «круговорот ртути» в лампе самостоятельно.

Помимо уже привычных глазу длинных (более метра) ЛЛ в светильниках для помещений ещё «советских» времён можно гораздо чаще встретить короткие прямые ЛЛ для подвесных потолков и компактные ЛЛ (их трубка свёрнута как нечто U-образное либо вообще представляет из себя многовитковую спираль) с индивидуальной ПРА (Пуско-Регулирующей Аппаратурой). Последние можно вворачивать в стандартные патроны для ламп накаливания внутри помещений.

До начала XXI-го века и «рассвета эпохи светодиодов» ЛЛ часто встречались в ЖК-мониторах и сканерах: их использовали в качестве элементов подсветки (эти лампы были не толще спички и достаточно длинные, из-за чего их напряжение зажигания/работы могло доходить до киловольта).

Преимущества ЛЛ

  • Характеризуются высоким КПД/светоотдачей (в разы превышали лампы накаливания по эффективности и до последнего времени успешно конкурировали со светодиодами).
  • Настраиваемый при изготовлении (за счёт композиции люминофоров) итоговый спектр излучения.
  • Длительный срок службы (от тысяч до десятков тысяч часов) при отсутствии частых включений-выключений.

Недостатки ЛЛ

  • Априорное наличие ртути внутри (ЛЛ без ртути НЕ БЫВАЕТ!) и необходимость отдельной их утилизации как «ртутьсодержащих отходов».
  • Линейчатый (ненатуральный) спектр у «дешёвых» ламп — и повышенная стоимость ламп с многокомпонентным (3, 5 и более) люминофором.
  • Неизбежная деградация люминофора при длительной эксплуатации (снижение светоотдачи и «дрейф спектра» всей лампы).
  • Деградация электродов (перегорание влечёт за собой выход всей лампы из строя).
  • Обязательное наличие ПРА (у современных ламп это компактная Электронная ПРА — ЭПРА).

Любопытно отметить, что последние два недостатка можно «обратить» в «бытовое достоинство»: от перегоревшей компактной лампы (с ЭПРА) можно без переделки отделить ЭПРА и подключить к примерно подходящей по мощности «классической» трубке ЛЛ — и она будет работать!

Энергосберегающие газоразрядные люминесцентные лампы – это модели осветительных приборов для создания дневного света в помещениях, где нет солнечных лучей. Если модели накаливания или диодные не используют для горения специальные соединения газов, то люминесцентные излучают свет благодаря реакции смеси газов, которые находятся в колбе с фитилем.

светильники дневного света
Фото — светильники дневного света

Достоинства металлогалогенов

Специалисты и потребители отмечают, что применение лампочек МГЛ обладает массой преимуществ. К ним можно отнести следующие:

  • Плюсы лампы МГЛбольшая долговечность, нежели у обыкновенных лампочек накаливания;
  • высокая степень светоотдачи;
  • небольшое энергопотребление;
  • компактность;
  • надежность нормального функционирования даже в условиях низких температур;
  • хорошая цветопередача.

Не лишены металлогалогеновые лампы и недостатков. В их числе:

  • невозможность регулировки светопотока;
  • долгий разогрев;
  • необходимость применения ИЗУ;
  • отсутствие возможности вновь зажечь МГЛ лампу сразу после деактивации;
  • чувствительность к резким перепадам напряжения.

Невзирая на некоторые недостатки, лампочки металлогалогенного типа используются и в обычных светильниках, и в светосигнальном оборудовании, что обусловлено массой полезных свойств.

Металлогалогеновые лампы используются во многих областях:

  • Область применения ламп МГЛсценическое, студийное и киносъёмочное освещение;
  • декоративное;
  • архитектурное;
  • утилитарное;
  • освещение на улицах, в частности, на карьерах, железнодорожных станциях, объектах спортивного назначения и т. д.

Помимо всего прочего, лампы металлогалогенового типа нередко используются для производства фар для автомобильного транспорта и при устройстве освещения промышленных предприятий.

1. Длительный рабочий период.2. Хорошие экономичные показатели.3. Цветовая температура ламп варьируется до 6500К.4. Высокая интенсивность светового потока.5. Низкое энергетическое потребление.6. Стойкость к температурным перепадам7. Малые размеры дают возможность применения в труднодоступных местах.

ЧИТАТЬ ДАЛЕЕ:  Светлый угол - светодиоды • Замена люминесцентной лампы
Оцените статью
MALIVICE.RU