Расчет ветрогенератора — методика самостоятельного расчета мощности вертикального ветрогенератора

Как работает простой ветрогенератор

Существует две формулы, по которым вы можете определить мощность ветрогенератора, зная скорость ветра и радиус либо диаметр лопастей.

Первая формула немного сложнее, и реже используется.

Мощность = коэффициент использования энергии ветра * ((плотность возд. потока * скорость ветра в кубе)/2 * п * радиус в квадрате)

Вторая формула несколько упрощена.

Мощность = 0,6 * п * радиус в квадрате * скорость ветра в кубе

Скорость ветра для расчёта стоит брать ниже среднегодовой, чтобы реально понимать, на какие цифры вам стоит рассчитывать.

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

Ветрогенератор – прибор, позволяющий преобразовывать энергию ветра в электричество.

Принцип работы его заключается в том, что ветер вращает лопасти, приводит в движение вал, по которому вращение поступает на генератор через редуктор, увеличивающий скорость.

Работа ветряной электростанции оценивается по КИЭВ – коэффициенту использования энергии ветра. Когда ветроколесо вращается быстро, оно взаимодействует с большим количеством ветра, а значит забирает у него большее количество энергии

Подразделяют две основные разновидности ветряных генераторов:

  • ветрикальные;
  • горизонтальные.

Вертикально ориентированные модели построены так, чтобы ось пропеллера была расположена перпендикулярно земле. Таким образом, любое перемещение воздушных масс, независимо от направления, приводит конструкцию в движение.

Такая универсальность является плюсом данного типа ветряков, но они проигрывают горизонтальным моделям по производительности и эффективности работы

Для контроля и улавливания изменений направления ветра устанавливают специальные приборы. КПД при таком расположении винта значительно выше, чем при вертикальной ориентации. В бытовом применении рациональней использовать ветрогенераторы этого типа.

Расчет идеального и реального ветряка

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

Прежде чем приобрести или изготовить ветрогенератор, необходимо определиться с его мощностью, собственной потребностью в энергии и прочих параметрах устройства. Это принципиально важно при покупке ветряка, так как цены настолько велики, что приходится покупать устройство, которое пользователь сможет осилить по финансам. В некоторых случаях возможности оказываются настолько низкими, что приобретение уже не имеет смысла.

P = r · V3 · S/2,

где r – показатель плотности воздуха (1,225 кг/м3), V – значение, отражающее с какой скоростью движется поток (м/с), S – площадь потока (м2).

Чтобы рассчитать ветрогенератор, можно для примера взять площадь винта в 3 м2, а скорость ветра – 10 м/с. Тогда получится следующее значение: 1,225 · 103 · 3/2 = 1837,5 Вт. Что касается винтов, то для небольшого дома их радиус должен быть хотя бы 3-4 м. Тогда диаметр ограничивается значениями в 6-8 м.

В рассчитанной мощности ветрового потока не были учтены потери. Конечное значение будет еще несколько ниже. Для получения точного результата его умножают на коэффициент, равный:

  • 35-45% – для ветрогенераторов с 3 горизонтальными лопастями;
  • 15-25% – для ветряков типа Савониус с вертикальными лопастями.

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

С учетом коэффициента использования энергии ветра мощность ветрогенератора может составить 1837,5 · 40% = 735 Вт (для горизонтальной установки) и 1837,5 · 20% = 367,5 Вт.

На следующем шаге расчета должен быть учтен еще КПД самого генератора, равный:

  • 80% – для установок, в основе работы которых лежат магниты;
  • 60% – для генератора с электровозбуждением.

Тогда для ветряка с горизонтальными лопастями требуемая мощность составит 735 · 80% = 588 Вт. Еще 20% из этого значения вычитаются на потери в контроллерах, проводах и диодном мосту. Тогда от изначального значения в 1837,5 Вт остается 588 – 20% = 470,4 Вт.

Так, при расчете мощности ветрогенератора для дома и дачи ожидаемое значение можно смело делить пополам. Лучше сразу проектировать установку в 2 раза мощнее, чем требуется по расчетам. Так вы компенсируете все недостатки, включая те или иные свойства используемых материалов и нюансы сборки в домашних условиях. Такой ветрогенератор будет обеспечивать ваше жилище необходимой электроэнергией без перебоев.

Кинетическую энергию Экин (Дж) воздушного потока со сред­ней скоростью v (м/с), проходящего через поперечное сечение F (м2), перпендикулярное v, и массой воздуха т (кг) рассчитыва­ют по формуле

Экин = mv2/2 (4.1)

Величину т определяют по формуле

m = pvF, (4.2)

где р — плотность воздуха, кг/м:3.

При расчетах в качестве р часто принимают ее значение, равное 1,226 кг/м3 соответствующее нормальным климатиче­ским условиям: t = 15 °С, р = 760 мм рт. ст., или 101,3 кПа. Если в (4.1) в качестве т принять секундную массу воздуха (кг/с), то получим значение мощности, развиваемой потоком воздуха (Дж/с или Вт), т. е.

N = 0,5 p v3F. (4.3)

Nуд=0,5 p v 3. (4.4)

Обратите внимание

В ветроэнергетике обычно используют рабочий диапазон ско­ростей ветра, не превышающих 25 м/с. Эта скорость соответст­вует 9-балльному ветру (шторм) по 12-балльной шкале Бофорта.

V, м/с 2 3 4 5 10 14 18 20 23 25

Nуд, Вт/м2 4,9 16,55 39,2 76,6 613 1682 3575 4904 7458 9578

Для ориентировочных расчетов в диапазоне скоростей ветра от vpmin до vpN полезную мощность ВЭУ NВЭУ (кВт) для заданной скорости ветра v (м/с) на высоте башни НБ (м) и диаметре ротора ВЭУ D1 (м) рассчитывают по формуле

NВЭУ = NУД FВЭУ ηР ηГ ϛ10-3, (4.5)

где NУД (Вт/м2) определяют по (4.4); FВЭУ (м2) — отметаемая пло­щадь ВЭУ с горизонтальной осью вращения, вычисляют по фор­муле

FВЭУ = πD12/4 (4.6)

ϛ — коэффициент мощности, обычно принимают равным 0,45 в практических расчетах, отн. ед.; ηР — КПД ротора (порядка 0,9), отн. ед.; ηГ— КПД генератора (порядка 0,95), отн. ед.

NВЭУ=1,85 D2v3 (4.7)

lopasti-vetrogeneratora-pvh-430x366.jpg

Для малых ВЭУ vpmin находится обычно в пределах 2,5…4 м/с, a vpN — 8… 10 м/с. Для крупных ВЭУ указанные значения со­ставляют 4…5 м/с и 12… 15 м/с соответственно. Предельная до­пустимая скорость ветра по соображениям прочности ВЭУ равна 60 м/с.

Турбины в составе ветровых электростанций (ВЭС) нужно располагать на расстоянии не менее пяти диаметров ротора одна от другой.

Если ВЭУ располагают в ряд перпендикулярно направ­лению доминирующих ветров, то расстояние между ними может быть сокращено до четырех диаметров ротора.

Важно

Системы управле­ния современных ВЭС — микропроцессоры, осуществляющие мониторинг всех функций ВЭУ с возможностью дистанционного контроля.

Разработанные отечественными специалистами конструкции ВЭУ являются абсолютно чистыми источниками энергии. Вра­щение ветротурбины у них значительно медленнее, чем у извест­ных ВЭУ, что является безопасным для обитания и перелетов

Глава 4

ИСПОЛЪЗОВАНИЕ ЭНЕРГИИ ВЕТРА

Правильный расчет ветрогенератора: что нужно учитывать при подсчете мощности ветроколеса?

1) эффективность предлагаемых ВЭУ выше не менее чем на 30% лучших мировых образцов;

2) простота изготовления, позволяющая выполнить ВЭУ на небольших заводах металлоконструкций.

Стадия освоения объекта: наличие конструкторско-техничес-кой документации, изготовление и испытание моделей, строи­тельство опытно-промышленного образца.

Сразу следует оговориться: если конструкция домашней энергетической ветроустановки содержит один аккумулятор на 12 вольт, смысл ставить инвертор на такую систему полностью исключается.

В среднем потребляемая мощность бытового хозяйства составляет не менее 4 кВт на пиковых нагрузках. Отсюда вывод: количество аккумуляторных батарей для такой мощности должно составлять не менее 10 штук и желательно под напряжение 24 вольта. На такое количество АКБ уже есть смысл устанавливать инвертор.

Инвертор небольшой мощности (600 Вт), который может быть использован для домашней малой энергетической установки. Запитать от такой техники напряжением 220 вольт можно телевизор или небольшой холодильник. На лампы в люстре тока уже не хватит

Однако чтобы обеспечить полностью энергией 10 аккумуляторов с напряжением по 24 Вт на каждый и стабильно поддерживать их заряд, потребуется ветряк мощностью не менее 2-3 кВт. Очевидно, для бытовых простеньких конструкций такую мощность не потянуть.

Тем не менее, рассчитать мощность инвертора можно следующим образом:

  1. Суммировать мощность всех потребителей.
  2. Определить время потребления.
  3. Определить пиковую нагрузку.

На конкретном примере это будет выглядеть так.

Пусть в качестве нагрузки есть бытовые электроприборы: лампы освещения – 3 шт. по 40 Вт, телевизионный приёмник – 120 Вт, компактный холодильник 200 Вт. Суммируем мощность: 3*40 120 200 и получаем на выходе 440 Вт.

Определим мощность потребителей для среднего периода времени в 4 часа: 440*4=1760 Вт. Исходя из полученного значения мощности по времени потребления, логичным видится подбор инвертора из числа таких приборов с выходной мощностью от 2 кВт.

Опираясь на это значение, рассчитывается вольт-амперная характеристика требуемого прибора: 2000*0,6=1200 В/А.

Классическая схема воспроизводства и распределения энергии, полученной от ветряного генератора бытового типа. Однако чтобы обеспечить долговременной энергией такое количество приборов, нужна достаточно мощная установка ( )

Реально нагрузка от домашнего хозяйства на семью в три человека, где имеется полноценное оснащение бытовой техникой, будет выше рассчитанной в примере. Обычно и по времени подключения нагрузки параметр превышает взятые 4 часа. Соответственно, инвертор ветряной энергосистемы потребуется более мощный.

Расчёт и выбор контроллера заряда

Когда вы решили приобрести такой полезный прибор, как ветрогенератор, нужно учитывать следующие параметры:

  • мощность ветрогенератора на неодимовых магнитах. Если в вашей местности нет сильных ветров, вам нужен генератор с маленькой мощностью
  • направление ветра. Если ветра часто меняют направление, вам подойдет только вертикальный ветрогенератор с подвижными лопастями
  • марка. От производителя напрямую зависит цена прибора. Следует помнить, что импортный товар всегда дороже российских аналогов

Конечно, в первую очередь нужно высчитать мощность.

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

Имея расчётное значение числа оборотов винта (W), полученное по вышеописанной методике, можно уже подбирать (изготавливать) соответствующий генератор. Например, при степени быстроходности Z=5, количестве лопастей равном 2 и частоте оборотов 330 об/мин. при скорости ветра 8 м/с., мощность генератора приблизительно должна составлять 300 Вт.

Генератор ветряной энергетической установки «в разрезе». Показательный экземпляр одной из возможных конструкций генератора домашней ветряной энергосистемы, собранной самостоятельно

Так выглядит электрический веломотор, на базе которого предлагается делать генератор для домашнего ветряка. Конструкция веломотора идеально подходит для внедрения практически без расчётов и доработок. Однако мощность их невелика

Параметр Значения
Напряжение, В 24
Мощность, Вт 250-300
Частота вращения, об/мин. 200-250
Крутящий момент, Нм 25

Положительная особенность веломоторов в том, что их практически не нужно переделывать. Они конструктивно разрабатывались как электродвигатели с низкими оборотами и успешно могут применяться под ветрогенераторы.

Контроллер заряда АКБ необходим для ветряной энергетической установки любого типа, включая бытовую конструкцию.

Расчёт этого устройства сводится к подбору электрической схемы прибора, которая бы соответствовала расчётным параметрам ветровой системы.

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

Из тих параметров основными являются:

  • номинальное и максимальное напряжение генератора;
  • максимально возможная мощность генератора;
  • максимально возможный ток заряда АКБ;
  • напряжение на АКБ;
  • температура окружающего воздуха;
  • уровень влажности окружающей среды.

Исходя из представленных параметров, ведётся сборка контроллера заряда своими руками или подбор готового устройства.

Контроллер заряда аккумуляторов, применяемых в составе ветровой энергоустановки. Прибор промышленного изготовления, выбирая который требуется лишь внимательно изучить технические характеристики для точного согласования с имеющейся системой

Наконец, при расчёте (подборе) схемы контроллера, рекомендуется не забывать о присутствии такой функции, как управление инвертором.

Расчет мощности ветроколеса

Методика расчета мощности ветроколеса ветрогенератора относительно точная и довольно простая.

Ниже формула расчета мощности энергии ветра P=0.6*S*V^3, где P- мощность Ватт S- площадь ометания кв.м.

V^3- Скорость ветра в кубе м/с Дополнительно формула расчета площади круга S=πr2, где π- 3,14 r- радиус окружности в квадрате К примеру если взять площадь винта 3кв.м. и посчитать мощность на ветре 10 м/с, то получится 0,6*3*10*10*10=1800ватт.

Но это мощность ветрового потока, а винт заберет часть мощности, которая в теории может достигать 57%, но на практике для горизонтальных трехлопастных ветрогенераторов этот параметр 35-45%. А для вертикальных типа Савониус 15-25%.

Обратите внимание

Тогда в среднем для горизонтального трехлопастного винта коэффициент использования энергии ветра поставим 40% и посчитаем, 1800*0,4= 720 ватт. Винт заберет 720 ватт у ветра, но еще есть КПД генератора, который у генераторов на постоянных магнитах примерно 0,8 , а с электровозбуждением 0,6. Тогда 720*0,8=576 ватт.

Но на практике все может быть гораздо хуже, так-как генератор не во всех режимах работы имеет высокий КПД, так-же eсть потери в проводах, на диодном мосту, в контроллере, и в аккумуляторе. Поэтому можно скинуть смело еще 20% мощности и останется примерно 576-20%=640,8 ватт.

У вертикального ветрогенератора это параметр будет еще меньше так-как во-первых КИЭВ всего 20%, а так-же мультипликатор, КПД которого 70-90%. Тогда изначальные из 1800 ватт мощности ветра лопасти отнимут 1800*0,2=360ватт. Минус КПД генератора 0,8 и мультипликатора 0,8 равно 360*0,8*0,8=230,4ватт. И еще минус 20% на потери в проводах, диодном мосту, контроллере и АКБ., и останется 230,4-20%=183,6ватт.{amp}lt;p{amp}gt;

Эту формулу можно встретить на многих форумах и сайтах по ветрогенераторам. Для проверки формулы я хочу сравнить реальные данные двух ветрогенераторов небольшой мощности с почти одинаковыми по площади винтами, но один горизонтальный, а второй вертикальный.

На фото два реальных самодельных ветрогенератора, первый горизотальный трехлопастной с диаметром винта 1,5м., второй вертикальный шириной 1м высотой 1,8м. Не считая данные сразу напишу что мощность горизонтального на ветру 10м/с около 90 ватт, и вертикального 60ватт. КИЭВ первого так-как лопасти сделаны на глазок наверно 0,3 , а второго вертикального вроде хорошо сделанного 0,2.

Получились вот такие теоретические данные, но зная реальные становится становится понятно что КИЭВ обоих ветрогенераторов и КПД их генераторов далек от хороших показателей. В таком случае для большинства самодельных генераторов, которые делаются на глазок без расчетов можно смело скидывать еще 50% и получить в итоге реальную ожидаемую мощность от ветроустановки с ветроколесом определенной площади.{amp}lt;p{amp}gt;

Экин = mv2/2 (4.1)

m = pvF, (4.2)

FВЭУ = πD12/4 (4.6)

Глава 4

P = r · V3 · S/2,

Самостоятельное изготовление ветряка также нуждается в предварительном расчете. Никому не хочется потратить время и материалы на изготовление неведомо чего, хочется иметь представление о возможностях и предполагаемой мощности установки заранее. Практика показывает, что ожидания и реальность между собой соотносятся слабо, установки, созданные на основе приблизительных прикидок или предположений, не подкрепленных точным расчетами, выдают слабые результаты.

Поэтому обычно используются упрощенные способы расчетов, дающие достаточно близкие к истине результаты и не требующие использования большого количества данных.

Как произвести?

Для расчета ветрогенератора надо произвести следующие действия:

  • определить потребность дома в электроэнергии. Для этого необходимо подсчитать суммарную мощность всех приборов, аппаратуры, освещения и прочих потребителей. Полученная сумма покажет величину энергии, необходимой для питания дома
  • полученное значение необходимо увеличить на 15-20 %, чтобы иметь некоторый запас мощности на всякий случай. В том, что этот запас нужен, сомневаться не следует. Наоборот, он может оказаться недостаточным, хотя, чаще всего, энергия будет использоваться не полностью
  • зная необходимую мощность, можно прикинуть, какой генератор может быть использован или изготовлен для решения поставленных задач.  От возможностей генератора зависит конечный результат использования ветряка, если они не удовлетворяют потребностям дома, то придется либо менять устройство, либо строить дополнительный комплект
  • расчет ветроколеса. Собственно, этот момент и является самым сложным и спорным во всей процедуре. Используются формулы определения мощности потока

P=k·R·V³·S/2

Где P — мощность потока.

K — коэффициент использования энергии ветра (величина, по своей сути близкая к КПД) принимается в пределах 0,2-0,5.

R — плотность воздуха. Имеет разные значения, для простоты примем равную 1,2 кг/м3.

V — скорость ветра.

S — площадь покрытия ветроколеса (покрываемая вращающимися лопастями).

Считаем: при радиусе ветроколеса 1 м и скорости ветра 4 м/с

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

P = 0,3 × 1,2 × 64 × 1,57= 36,2 Вт

Результат показывает, что мощность потока равняется 36 Вт. Этого очень мало, но и метровая крыльчатка слишком мала. На практике используются ветроколеса с размахом лопастей от 3-4 метров, иначе производительность будет слишком низкой.

При расчете ветряка следует учитывать особенности конструкции ротора. Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Не менее важным будет обеспечение достаточной мощности крыльчатки для вращения ротора генератора. Устройства с тугими роторами, позволяющие получать хороший выход энергии, требуют немалой мощности на валу, что может обеспечить только крыльчатка с большой площадью и диаметром лопастей.

Не менее важным моментом являются параметры источника вращения — ветра. Перед производством расчетов следует как можно подробнее узнать о силе и преобладающих направлениях ветра в данной местности. Учесть возможность ураганов или шквалистых порывов, узнать, с какой частотой они могут возникать. Неожиданное возрастание скорости потока опасно разрушением ветряка и выводом из строя преобразующей электроники.

Особенностью самодельных устройств является использование подручных материалов и устройств. В таких условиях обеспечить полноценное соответствие проектным данным не всегда удается. При этом, разница в расчетных и реальных показателях может оказаться как отрицательной, так и положительной.

Величины, определяющие возможности комплекта, это мощность ветроколеса и генератора. Насколько они будут соответствовать друг другу, такая и общая мощность ветрогенератора будет получена в результате.

Например, если генератору для номинальной производительности требуется скорость вращения в 2000 об/мин, то никакое ветроколесо не сможет обеспечить нужные значения.

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

Поэтому прежде всего следует подбирать тихоходные образцы генераторов, способные на выработку больших количеств энергии при низких скоростях вращения. Для этого модернизируются готовые устройства (например, устанавливаются неодимовые магниты на ротор автомобильных генераторов), изготавливаются собственные конструкции на базе тех же неодимовых магнитов с заранее подсчитанной мощностью и производительностью.

Формулы для расчёта

P=k·R·V³·S/2

V — скорость ветра.

Что нужно учитывать

При расчете ветряка следует учитывать особенности конструкции ротора . Существуют крыльчатки с вертикальным и горизонтальным типом вращения, имеющие разную эффективность и производительность. Наиболее эффективными считаются горизонтальные конструкции, но они имеют потребности в высоких точках установки.

Расчёт винтов ветряных установок

При конструировании ветряка обычно применяются два вида винтов:

  1. Вращение в горизонтальной плоскости (крыльчатые).
  2. Вращение в вертикальной плоскости (ротор Савониуса, ротор Дарье).

Z= L*W/60/V

Для этой формулы: Z – степень быстроходности (тихоходности) винта; L – размер длины описываемой лопастями окружности; W – скорость (частота) вращения винта; V – скорость потока воздуха.

Такой выглядит конструкция винта под названием «Ротор Дарье». Этот вариант пропеллера считается эффективным при изготовлении ветрогенераторов небольшой мощности и размеров. Расчёт винта имеет некоторые особенности

Число лопастей Степень быстроходности Скорость ветра м/с
2 5 330

H=2πR* tg α

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

Здесь: 2π – константа (2*3.14); R – радиус, описываемый лопастью; tg α – угол сечения.

Расчет параметров ветроколеса

Расчет ветроколеса имеет важное значение при создании ветрогенератора. Именно крыльчатка принимает на себя поток ветра, передает его энергию в виде вращательного движения на ротор генератора. Для расчета потребуется, прежде всего, знание параметров генератора — мощность, номинальная скорость вращения ротора и т.д.

Следует учитывать, что увеличение количества лопастей снижает скорость вращения, но увеличивает мощность вращательного движения. Соответственно, малое число лопастей надо применять на быстроходных генераторах, а большое количество —торах, нуждающихся в большом усилии вращения.

Z = L × W / 60 / V,

Где Z — искомая величина (быстроходность),

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

L — длина окружности, описываемой лопастями.

W — частота (скорость) вращения крыльчатки.

V — скорость ветра.

Специалисты рекомендуют для самостоятельного изготовления выбирать многолопастные образцы с количеством лопастей от 5 штук. Они не требовательны к балансировке, имеют более стабильную аэродинамику и более активно принимают на себя энергию воздушного потока.

Величина экономии, полученной от использования ветрогенератора, рассчитывается по собственным данным. Она складывается, с одной стороны из расходов на приобретение и сборку ветряка или его деталей, расходов на обслуживание комплекта. С другой стороны, учитывается стоимость сетевой электроэнергии в данном регионе, либо цена подключения и прочие расходы, связанные с этим.

Разница полученных величин и будет являться величиной экономии. Необходимо учесть также отсутствие возможности для подключения в некоторых районах, когда ветрогенератор становится единственным доступным вариантом. В таких случаях разговор об экономии становится неуместным.

Количество вырабатываемой энергии зависит от параметров крыльчатки и собственно генератора. Максимально возможным количеством следует считать номинальные данные генератора, уменьшенные на величину КИЭВ крыльчатки. На практике показатели намного ниже, так как в получении результата большое значение имеет скорость ветра, которую невозможно заранее предсказать.

Кроме того, имеются различные тонкие эффекты, в сумме оказывающие заметное влияние на конечную производительность ветряка. Принципиально важными значениями являются диаметр крыльчатки и скорость ветра, от них напрямую зависит количество полученной энергии.

Минимальная скорость ветра — в данном случае это величина, при которой лопасти ветряка начинают вращаться. Это значение показывает степень чувствительности крыльчатки, но на конечный результат влияет слабо. Генератор имеет собственные потребности, для него само по себе вращение еще не решает все вопросы.

Требуется определенная скорость и стабильность движения, отсутствие резких рывков. Рассматривать минимальную скорость вращения следует только с позиций общей эффективности рабочего колеса, позволяющей оценивать его способность обеспечить выработку энергии на слабых потоках.

Общие рекомендации

Очевидно, что для выбора наиболее оптимального диаметра винта ветрогенератора необходимо знать среднюю скорость ветра на месте планируемой установки. Количество электроэнергии, произведенной ветряком возрастает в кубическом соотношении с повышением скорости ветра. Например, если скорость ветра увеличится в 2 раза, то кинетическая энергия, выработанная ротором, увеличится в 8 раз. Поэтому можно сделать вывод, что скорость ветра является самым важным фактором, влияющим на мощность установки в целом.

Для выбора места установки ветрогенерирующей электроустановки наиболее подойдут участки с минимальным количеством преград для ветра (без больших деревьев и построек) на расстоянии от жилого дома не менее 25-30 метров (не забывайте, что ветрогенераторы весьма громко гудят во время работы). Высота расположения центра ротора ветряка должна быть не менее чем на 3-5 метров выше ближайших построек.

В случае, если ваш загородный дом не планируется подключать к общей сети, то следует рассмотреть вариант комбинированных систем:

  • ВЭС Солнечные батареи
  • ВЭС Дизель

Расчет ветрогенератора - методика самостоятельного расчета мощности вертикального ветрогенератора

Комбинированные варианты помогут решить проблемы в регионах, где ветер переменчивый или зависит от времени года, а также данный вариант является актуальным для солнечных батарей.

ЧИТАТЬ ДАЛЕЕ:  Калькулятор расчета нагрузки на пол от обложенной кирпичом металлической печи - нужен ли фундамент
Оцените статью
MALIVICE.RU