Генератор постоянного тока: устройство, принцип работы, классификация

Автомобильный генератор. Виды и устройство. Работа и особенности

Рассмотрим, что представляет собой генератор постоянного тока. Во-первых, это изготовленный из прочной стали или чугуна корпус устройства. По корпусу также проходит магнитное поле, создаваемое полюсами генератора. Во-вторых, это ротор и статор.

На ферромагнитный статор закрепляется катушка возбуждения. Направление магнитного потока определяют сердечники статора, оснащённые полюсами.

Для большого КПД самого генератора, ротор собран из металлических пластин. Кроме того такая конструкция ротора позволяет значительно сократить появление вихревых токов.

На металлические пластины сердечника наматывают медную или обмедненную обмотку – обмотку самовозбуждения. Количество щеток генератора, изготавливаемых из графита, зависит от количества полюсов на нем, как минимум две. Конструкцию генератора мы можем наглядно рассмотреть на рисунке.

Вывод контура генератора соединяются с помощью коллекторных пластин. Пластины делаются из доступного и хорошего проводника электрического тока – меди, а разделяются между собой диэлектриком.

Принцип действия

Принцип действия генератора постоянного тока, как и любого другого устройства похожего типа основан на знакомого нам со школы явления электромагнитной индукции и появление в устройстве электродвижущей силы – ЭДС.

Вспомним школьную физику: если к проводнику с вращающимся внутри него постоянным магнитом присоединить какую-либо нагрузку, то в ней появится переменный ток.

Такое возможно из-за того, что поменялись местами магнитные полюса самого магнита.

Чтобы получить ток постоянный необходимо присоединять точки подключения нагрузки синхронно со скоростью вращения магнита. Для этого и предназначен в генераторе коллектор, закреплённый на роторе и крутящийся с той же частотой.

Снимается полученная в результате всего этого процесса энергия с помощью графитных щёток, обладающих хорошей проводимостью и достаточно низким трением. Когда происходит переключения пластин коллектора ЭДС равна нулю, но полярность ее не меняется, за счёт переподключения на другой проводник.

Классификация

Разделение генераторов по классам происходит по тому принципу, как они возбуждаются. Есть два основных типа классификации генераторов, это самовозбуждающиеся и генераторы с независимым возбуждением.

Первый класс это устройства, где обмотка питается непосредственно от якоря. Его можно подразделить на последовательно, параллельное и смешанное возбуждение. Второй класс подразделяется на электромагнитное и магнитоэлектрическое возбуждение.

Способы возбуждения

За счёт использования в устройствах малой мощности постоянных магнитов получается магнитное возбуждение. Соответственно при использовании электромагнитов имеем электромагнитное. Данный способ нашёл широкое применение при производстве генераторов такого типа.

Ещё способы возбуждения генераторов постоянного тока зависят от назначения нужного нам генератора и от того, каким способом подключим обмотку. Если подключить обмотку через специальный реостат к внешнему истоку тока, тогда имеем независимое возбуждение. Такие генераторы находят широкое применение в электрохимическом производстве.

При подключении обмотки через все тот же реостат к клемам самого генератора, получим параллельное возбуждение. Большим плюсом генераторов с таким типом возбуждения является его защита от короткого замыкания, обусловленного все тем же способом возбуждения.

При наличии в генераторе двух обмоток имеет место смешенное подключение, одну обмотку подключают последовательно, другую параллельно.

Подключение проводят таким образом, чтобы создавались магнитные потоки в одном векторе. Число витков при таком подключение в обмотках рассчитывается так, чтобы падение напряжение на одной обмотке компенсировалось другой.

Под основными техническими характеристиками генераторов можно понимать следующие величины. Это ЭДС генератора. Непосредственно с ЭДС любого генератора напрямую связана его полная электрическая мощность, которая ей прямопропорциональна.

Полная мощность возрастает при увеличении количества полюсов и частоты оборотов якоря. Полезная же мощность, передаваемая на подключённое внешнее устройство, равна произведению выходного тока на выходное напряжение.

Основная характеристика любого производящего что-либо устройства, в том числе и нашего генератора это КПД. Если генератор выключить, а потом включить, то его КПД будет уменьшаться, в связи с увеличением затрат энергии на нагрев обмотки. Различают электрический КПД и промышленный.

Если генератор работает на холостом ходу или загружен не полностью, то и КПД соответственно значительно уменьшается. Для того чтобы получить комфортный в экономическом плане режим работы генератора в сети, где нагрузка постоянно изменяется, подключают несколько генераторов, соединённых между собой параллельно.

При таком подключении, причём желательно через автомат и вольтметр, добиваются равномерного распределения нагрузки между работающими генераторами. При увеличении потребления внешней нагрузки, в работу включается второй генератор, тем самым регулируя обороты первого и выравнивая напряжение.

ЧИТАТЬ ДАЛЕЕ:  Диммер своими руками — устройство, принцип работы как сделать диммер самому

При использовании генераторов со смешанным возбуждением происходит автоматическая регулировка характеристик работающих вместе генераторов, повышается стабильность работы.  Это возможно из-за того, что в таких генераторах есть уравнительный провод, проходящий между отрицательными или положительными щётками. Именно эта шина и делает работу таких генераторов устойчивой.

Устройство машины постоянного тока при первом знакомстве кажется сложным. Но если понять происходящие внутри процессы, ситуация существенно прояснится.

Этими преобразованиями занимаются машины постоянного и переменного тока. У первых в обмотку возбуждения подается постоянный ток.

Машины постоянного тока (МПТ), преобразующие механическую энергию в электричество, называются генераторами. Выполняющие обратное преобразование — двигателями.

Устройство

МПТ состоят из двух частей:

  1. индуктор: неподвижная часть;
  2. якорь: вращается внутри индуктора.

В машинах переменного тока индуктор и якорь принято называть, соответственно, статором и ротором. Индуктор создает первичное магнитное поле, воздействующее на якорь с целью навести в нем ЭДС (генератор) либо заставить его вращаться (двигатель).

Генератор постоянного тока: устройство, принцип работы, классификация

В маломощных МПТ индуктором иногда выступает постоянный магнит, но чаще с целью добиться однородного магнитного потока применяют электромагнит, то есть систему катушек, создающих при протекании через них постоянного тока магнитное поле обмотка возбуждения (ОВ).

Устройство машины постоянного тока

Каждая катушка намотана на сердечник, вместе они образуют магнитный полюс. Для надлежащего распределения магнитного потока сердечник снабжен специальным наконечником. Основных полюсов может быть несколько. Помимо них применяются добавочные, обеспечивающие безыскровую работу коллектора. Последний представляет собой важный элемент МПТ, его функция будет рассмотрена ниже.

Ярмо индуктора одновременно является станиной МПТ, потому его так обычно и называют. К нему крепятся магнитные полюсы и подшипниковые щиты (вращается вал якоря). В сущности, ярмо — это лишь часть станины, по которой замыкаются магнитные потоки основных и добавочных полюсов.

Коллектор обеспечивает возможность подачи питания на обмотку вращающегося якоря.

Он является подвижной частью так называемого скользящего коллекторного контакта, и состоит из нескольких изолированных друг от друга сегментообразных медных пластин, закрепленных в виде цилиндра на валу якоря.

Неподвижная часть контакта представлена графитовыми или медно-графитовыми щетками, закрепленными в щеткодержателях. Пружинами они придавливаются к пластинам коллектора.

Принцип действия

Особенности функционирования МПТ зависит от того, в каком режиме она работает — генератора или двигателя. Далее подробно рассматриваются оба варианта.

Генератор

Принцип работы генератора постоянного тока основан на явлении электромагнитной индукции. Состоит оно в том, что при изменении магнитного потока, пересекающего проводник, в последнем наводится ЭДС.

Принцип действия генератора постоянного тока

Чтобы добиться изменения магнитного потока, меняют параметры поля либо двигают в постоянном поле проводник. По второму варианту и работает генератор постоянного тока: обмотка якоря приводится во вращение внешней механической силой.

Очевидно, что после поворота витков обмотки на 180 градусов ЭДС окажется направленной противоположно. Сохранить ток в подключенной к генератору цепи постоянным, то есть однонаправленным, помогает коллектор: в нужный момент он переподключает концы обмотки якоря к противоположным контактам цепи (щеткам). То есть в этой машине коллектор играет роль механического выпрямителя.

При наличии всего двух основных полюсов ток получится пульсирующим. Увеличение числа полюсов приводит к сглаживанию пульсаций.

Двигатель

Работа МПТ в режиме двигателя обусловлена возникновением так называемой амперовой силы. Она действует на помещенный в магнитное поле проводник при протекании по нему тока. Направление амперовой силы определяется по правилу левой руки.

Генератор постоянного тока: устройство, принцип работы, классификация

Сила Ампера появляется благодаря следующему механизму:

  1. при протекании тока вокруг проводника возникает магнитное поле с силовыми линиями, концентрически окружающими проводник (круговое поле);
  2. вектор его индукции по одну сторону от проводника сонаправлен с вектором индукции первичного магнитного поля, в которое проводник помещен. С этой стороны первичное поле усиливается;
  3. по другую сторону вектор наведенного электротоком поля направлен противоположно вектору индукции первичного поля, соответственно, здесь оно гасится;
  4. разница в индукции поля по обе стороны проводника активирует к возникновению данной силы. Определяется она по формуле: F = B * I * L, где: B — магнитная индукция первичного поля, I — сила тока в проводнике, L — длина проводника.

Как и в случае с генератором, после поворота витка обмотки якоря в определенное положение, требуется переключение контактов для изменения в ней направления тока либо полярности индуктора. Поэтому в режиме двигателя коллектор также необходим.

  1. Небольшая величина индукции.

  2. Отсутствие регулирования параметров магнитного потока.

Автомобильный генератор. Виды и устройство. Работа и особенности

За этим вполне банальным определением кроется очень сложное устройство, являющееся практически совершенством технической мысли. Ведь с момента изобретения в конце XIX века устройство генератора постоянного тока не претерпело существенных изменений.

Никакая энергия не возникает просто так, ниоткуда. Она — всегда порождение другой силы. Это касается и электрического тока. Чтобы он возник, нужно магнитное поле, позволяющее использовать эффект электромагнитной индукции — возбуждение ЭДС во вращающемся проводнике.

ЧИТАТЬ ДАЛЕЕ:  Датчик расхода воздуха устройство принцип работы проверка

Если к концам петли проводника, внутри которой вращается постоянный магнит, подключить нагрузку, то в ней потечет переменный ток. Произойдет это потому, что полюса магнита меняются местами. На этом эффекте основан принцип работы генераторов переменного тока, являющихся братьями-близнецами машин постоянного напряжения.

Генератор постоянного тока: устройство, принцип работы, классификация

Вся хитрость, благодаря которой получаемый ток не меняет направления, заключается в том, чтобы успевать коммутировать точки подключения нагрузки с той же скоростью, с какой вращается магнит.

Осуществить эту задачу может только коллектор – особое устройство, состоящее из нескольких токопроводящих секторов, разделенных диэлектрическими пластинами.

Оно закрепляется на якоре электрической машины и вращается синхронно с ним.

Съем электрической энергии с якоря осуществляется щетками – кусочками графита, имеющего высокую электропроводность и низкий коэффициент трения скольжения. В тот момент, когда токопроводящие сектора коллектора меняются местами, индуцируемая ЭДС становится нулевой, но изменить знак она не успевает, поскольку щетка передана токосъемному сектору, подключенному к другому концу проводника.

В результате, на выходе устройства получается пульсирующее напряжение одной величины. Чтобы сгладить пульсацию напряжения используется несколько якорных обмоток. Чем их больше, тем меньше броски напряжения на выходе генератора. Количество токосъемных секторов на коллекторе всегда в два раза больше, чем обмоток якоря.

Съем генерируемого напряжения с обмотки якоря, а не статора, является коренным отличием машины постоянного тока от переменного. Это же предопределило и их существенный недостаток: потери на трение между щетками и коллектором, искрение и нагрев.

Якорь собирается из стальных пластин с углублениями, в которые укладываются обмотки. Их концы подсоединяются к коллектору, состоящему из медных пластин, разделенных диэлектриком. Коллектор, якорь с обмотками и вал электрической машины после сборки становятся единым целым.

Статор генератора является одновременно и его корпусом, на внутренней поверхности которого закрепляется несколько пар постоянных или электрических магнитов. Обычно используются электрические, сердечники которых могут быть отлиты вместе с корпусом (для машин малой мощности) или набраны из металлических пластин.

Также на корпусе предусматривается место для крепления токосъемных щеток.В зависимости от количества полюсов магнитов на статоре меняется и количество графитовых элементов. Сколько пар полюсов, столько и щеток.

  • с независимым возбуждением;
  • параллельным;
  • последовательным.

При независимом возбуждении электрические магниты статора подключаются к автономному источнику постоянного тока. Обычно это делается через реостат. Достоинством такой схемы является возможность регулировки генерируемой электрической мощности в широких пределах. Недостатком – необходимость иметь дополнительный источник питания.

Остальные два способа являются частными случаями самовозбуждения генератора, которое возможно при небольшом остаточном магнетизме статора. При параллельной работе генератора постоянного тока электромагниты статора питаются частью генерируемого напряжения. Это самая распространенная схема.

При последовательном возбуждении цепь электромагнитов включается последовательно с нагрузочной цепью якоря. Величина тока, протекающего по электромагнитам, существенно зависит от нагрузки генератора. Поэтому такая схема используется только для подключения тяговых двигателей постоянного тока, которые при торможении переходят в режим генерации.

Применяется и смешанная схема подключения обмотки возбуждения – параллельно-последовательная. Для этого на каждом полюсе электромагнита должно быть две изолированные обмотки (включаемая последовательно обычно состоит всего из двух–трех витков).

Кроме того, передача генерируемой энергии через него осуществляется с большими потерями и физическими нагрузками. Поэтому, там где это возможно, машины постоянного тока заменяют асинхронными генераторами с выпрямительным мостом.

Таковы, например, все автомобильные источники электроэнергии.

Для обеспечения электрической энергией потребителей автомобильной электрической сети предусмотрены два источника питания: генератор и аккумуляторная батарея, которая питает энергией бортовую сеть до момента запуска двигателя.

Генератор постоянного тока: устройство, принцип работы, классификация

Ее особенностью является неспособность выработки электрического тока, а только его удержания внутри себя, и отдачи потребителям при необходимости. Поэтому аккумуляторная батарея не сможет одна долго обеспечивать электроэнергией сеть автомобиля, так как быстро разрядится, отдав всю энергию.

ЧИТАТЬ ДАЛЕЕ:  Какими бывают натриевые лампы виды характеристики применение выбор

Чем чаще запускается двигатель, и используются мощные потребители тока, тем быстрее произойдет ее разряд.

Благодаря использованию этих металлов для изготовления постоянных магнитов происходит сохранение первоначальных характеристик в течение длительного временного периода.

Для магнитоэлектрических генераторов характерен небольшой расход меди, невысокие потери, малый вес и размеры, небольшие потери мощности, отсутствие потерь на возбуждение, высокий КПД. Главный недостаток машин магнитоэлектрического типа – сложность регулирования.

Главная квалификация МПТ различных типов подразделяемых на двигатели и машины генераторного вида, подразделяется по принципу возбуждения:

  1. Машина, питаемая от стороннего источника, будет считаться устройством независимого возбуждения.

  2. МПТ шунтовая, использующая для выполнения возбуждения параллельно соединенные обмотки.

  3. МПТ сериесная, возбуждение происходит за счет использования обмотки соединенной последовательно.

  4. МПТ компаудного или смешанного типа, сочетающая для выполнения возбуждения оба типа соединения машинных обмоток.

В случае если обмотка или как еще говорят, цепь возбуждения машины запитана от электросети,  от  аккумулятора или стороннего генератора, то она будет принадлежать к классу машин  с возбуждением независимого типа.

Рис №1. Присоединение машины с независимым возбуждением.

В устройстве генератора, в схеме, в обязательном порядке присутствует, регулирующий Iвозб – реостат, и нагрузочное сопротивление (R). К главным параметрам, по которым можно судить о качествах машины относятся несколько видов характеристик это: внешняя, регулировочная и параметр характеризующий работу генератора во время холостого хода.

Характеристика х. х. выражена через влияние Iвозб. на ЭДС электрической  машины, количество оборотов остается неизменным. Она показывает величину напряжения на клеммах,  U должно быть равным величине ЭДС якоря при отключенной цепи и свидетельствует о магнитной насыщенности, явлении гистерезиса на элементах устройства.

Внешняя характеристика определяется зависимостью величины U замеренного на контактах МПТ от Iнагр в то время как скорость и Rцепи возбужд. останутся неизменными.

Демонстрация регулировочной характеристикой в результате изменения Iвозб, показывает влияние на него Iраб.

Характеристика нагрузки демонстрирует влияние на U замеренного  на клеммах машины Iвозб, она идентична с  характеристикой х. х. с ее помощью определяется воздействие на магнитное поле якорного тока.

Характеристика генератора от Iк.з прослеживается по замкнутой цепи по данным амперметра, подключенного к якорной цепи, подвержена влиянию Iк.з. и тока находящегося в шунтовой обмотке.

Использование генераторного оборудования независимого возбуждения желательно применять в случаях с важностью регулирования величины напряжения в самых широких границах, например, для питания электролитических ванн.

В том случае если энергия нужная для возбуждения машины берется из якоря самого устройства, то эта МПТ будет машиной с самовозбуждением.

Рис №2. Схемы МПТ с самовозбуждением магнитного потока: а – параллельное, в – последовательное, с – смешанное возбуждение.

Обмотки возбуждения и якоря для любых самовозбуждающихся машин подразделяются на три типа и классифицируются по соединению, это:

  1. Шунтовые – параллельное соединение обмоток.

  2. Сериесные – последовательное соединение.

  3. Компаудные – со смешанным соединением.

Некоторые типы современных двигателей, при разных типах присоединений в сеть обмоток, подразумевают прямое подключение возбуждающей обмотки в электрическую сеть.

Главное условие самовозбуждения, заключается в появлении тока на полюсах и ярме генератора при использовании остаточного Φ (магнитного потока).

Вследствие данного явления происходит якорь совершает вращательное действие и приводит к появлению ЭДС, вызывающей Iвозб, способствует прекращению действия Ф. Возбуждение такого типа требует выполнение условий присутствия согласного действия остаточного Ф и потока приращения – это служит вторым условием самовозбуждения.

Рис №3. Схема подключения шунтового генератора.

Падение напряжения характеризуется 3 главными условиями, это:

  1. Повышение Iя повышает IаRа, и снижает U.

  2. Появление реакции якоря приводит к понижению величин ЭДС и U.

  3. Понижение значения U приводит у снижению Iа и ЭДС.

В сериесных МПТ, характеристика х. х. снимается после поступления на обмотку напряжения от другого источника.

Оцените статью
MALIVICE.RU
Adblock
detector